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1 Introduction

This document describes the Pan-STARRS Image Processing Pipeline (IPP) data analysis Modules. The Modules use
the functionality of the Pan-STARRS Library (PSLib) to perform more complex tasks, especially tasks which require
assumptions of astronomical analysis or the data organization. Within the IPP, the Modules are tied together into programs
which perform complete data analysis tasks (an “analysis stage”). The modules may be tied together within a C framework
or using a high-level scripting language. Bindings of the Modules are made available to the scripting language using the
program SWIG.

In order to preserve name space, globally-visible structures and functions shall be prefixed with pm, for “Pan-STARRS
Modules”.

2 Runtime Configuration Data

PSLib defines a psMetadata structure which can carry labeled data of arbitrary types. The associated functions imple-
mented by PSLib consist of tools to manipulate and extract data from psMetadata collections. A particular application
of the psMetadata structure within PSLib is to carry the data from a FITS header. Other general-purpose information
is also carried with the structure. Functions are available to fill a psMetadata collection from a text-based configuration
file using a human-readable syntax, and to fill a psMetadata collection from a properly formatted XML document.

In the IPP Modules, we use psMetadata collections to carry run-time configuration data used by the data analysis
modules. Below, in the discussion of the various modules, this configuration information is defined by specifying the
name of the data item of interest, the conceptual meaning of that data item, and the allowed values for the data item. In
this section, we discuss top-level concepts related to the configuration information, including the sources of the run-time
configuration data and special operations used to extract information from the configuration system.

2.1 Configuration Data Sources

All modules need to load some configuration information defining parameters which may be configured at run-time. We
break these parameters down into three levels:

• Options for the particular site installation of the pipeline: the site;

• Options specifying the instrument setup, and in particular the format of the FITS file: the camera; and

• Options specifying the particular parameter choices that affect the details of an analysis: the recipe.

Note that these are arranged in an hierarchical order, with the site configuration being the most general, and the recipe
configuration the most specific. For example, not all sites will have to deal with all cameras, and different cameras may
require different recipes at different times according to their particular quirks, analysis experimentations, or their evolution.

Each of the levels will have a metadata configuration file. In the case of the site configuration, the filename shall be
that specified by the -site option on the command line if provided, the environment variable PS_SITE, if defined,
or ˜/.ipprc otherwise. The camera configuration shall be specified by the -camera option on the command line if
provided, or shall be inferred from a FITS header (more detail below). The recipe configuration shall be specified by the
-recipe option on the command line if provided, or from the the camera configuration (more detail below).

Modules SDRS 1 January 22, 2006
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2.2 Configuration Files

2.2.1 Site Configuration

The site configuration file must contain the following:

• The database configuration:

– DBSERVER of type STR: The database host name for psDBInit.

– DBUSER of type STR: The database user name for psDBInit.

– DBPASSWORD of type STR: The corresponding database password for psDBInit.

• CAMERAS of type METADATA: A list of instruments that the system understands. Cameras are specified as
separate metadata entries, with the name of the camera as the key, and the filename of the camera configuration
file (of type STR) as the data.

and may also contain the following psLib configuration options:

• TIME of type STR: The time configuration file (for psTimeInitialize).

• LOGLEVEL of type S32: The log level for psLogSetLevel.

• LOGFORMAT of type STR: The log format for psLogSetFormat.

• LOGDEST of type STR: The log destination for psLogSetDestination.

• TRACE of type METADATA: A list of components with the desired trace level (of type S32) for each.

No doubt there is a need for better security than storing the database password directly in the file, but we push this
problem onto the stack for now. (TBD)

We will add other data sources in the future, e.g., file paths, configuration for Nebulous and DVO, etc. (TBD) .

An example site configuration file:

### Example .ipprc file

### Database configuration
DBSERVER STR ippdb.ifa.hawaii.edu # Database host name (for psDBInit)
DBUSER STR ipp # Database user name (for psDBInit)
DBPASSWORD STR password # Database password (for psDBInit)

### Setups for each camera system
CAMERAS METADATA

MEGACAM_RAW STR megacam_raw.config
MEGACAM_SPLICE STR megacam_splice.config
GPC1_RAW STR gpc1_raw.config
LRIS_BLUE STR lris_blue.config
LRIS_RED STR lris_red.config

END

### psLib setup
TIME STR time.config # Time configuration file
LOGLEVEL S32 3 # Logging level; 3=INFO
LOGFORMAT STR THLNM # Log format

Modules SDRS 2 January 22, 2006



Pan-STARRS Image Processing Pipeline PSDC-430-012-11

LOGDEST STR STDOUT # Log destination
TRACE METADATA # Trace levels

psLib.math.psPolynomial S32 6
psLib.image.psImageConvolve S32 2

END

2.2.2 Camera Configuration

The camera configuration is somewhat complicated and involved, since it must not only specify how to translate the pixels
from a FITS file into a focal plane hierarchy (§3), but it must also specify how to derive the various values the IPP needs
(§2.3). Moreover, it must be able to do these for the great variety of cameras in use in the astronomical community.

Example camera configuration files are included in an appendix, but below we explain the components.

2.2.2.1 FITS File to Focal Plane Hierarchy

The Focal Plane hierarchy (pmFPA, pmChip, pmCell, pmReadout) is explained in more detail in §3. The top
level, an FPA contains one or more chips, which correspond to a contiguous piece of silicon. A chip contains one or more
cells, which correspond to a single amplifier. A cell contains one or more readouts, which correspond to individual reads
of the detector.

The FITS data storage formation is a standard in the astronomical community for storing astronomical images. A FITS
file consists of an arbitrary number of coupled human readable ASCII header segments and binary data segments. The
headers describe the format and layout of the data segments. The first of these groups is traditionally called the ’primary
header unit’ (PHU) and the rest are referred to as ’extensions’. The header segments may contain extensive documentary
information related to the interpretation of the data. Although the FITS format defines a standard representation of the
data, the header metadata is not so consistently defined within the astronomical community. Also, the flexibility of the data
format means that different representations are possible for the same fundamental collection of data. The tools presented
in this section provide a method to define and constrain the wide range of possible FITS representations of astronomical
images.

Within the FITS data representation, there are various choices which can and have been made for the placement of the
pixels in the file. In the simplest case, the camera consists of a single chip consisting of a single cell always read with a
single readout. In this case, the image data could be written as part of the primary data unit. In a more complex case with
multiple chips and multiple cells, the data may be organized in several ways. The data may be distributed into multiple
files or in multiple FITS data extensions. A single camera image may be written as a collection of files for individual
chips with separate extensions for each cell (CFH12K.split, GPC). Another camera may write a single file with multiple
extensions for each cell (Megacam.raw), or multiple extensions per chip, with each cell representing portions of the chip
image (Megacam.splice, CFHT-IR).

In all of these representations, there are only two basic distinctions in how the pixel data is stored: what level in the
hierarchy the entire FITS file corresponds to (FPA, chip, or cell), and what level the extensions correspond to (chip, cell
or no extensions at all). Knowing these, and having a list of the components, we can construct the focal plane hierarchy.

Note that a single data extension, consisting of a uniform grid of pixels, can only naturally represent a cell or a chip. In
order to represent the entire focal plane array as a single grid, some artificial choices would be made to fill-in or ignore the
gaps between chips and their relative rotations. Within our framework, a complete focal plane mosaic of multiple chips
could be represented as a single extension by treating the collection of pixels as if they were from a single chip.

To define the hierarchy, we specify the following keywords:
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• PHU of type STR: May be one of FPA, CHIP, or CHIP. This specifies the focal plane level of the Primary
Header Unit, and hence the entire FITS file (the ’class’ of the file) .

• EXTENSIONS of type STR: May be one of CHIP, CELL or NONE, though not of a level higher than that
specified by the PHU. This specifies what each extension represents.

• CONTENTS which may be of type METADATA or STR, depending upon the PHU and EXTENSIONS, spec-
ifies what the contents of the FITS file are:

– PHU=FPA, EXTENSIONS=CHIP: Type METADATA with the component keywords being the exten-
sion names and the values the names of the cells, separated by commas or whitespace.

– PHU=FPA, EXTENSIONS=CELL: Type METADATA with the component keywords being the exten-
sion names and the values the chip name and the cell type, separated by a colon.

– PHU=FPA, EXTENSIONS=NONE: Type METADATA with the component keywords being the chip
names and the values the names of the cells, separated by commas or whitespace.

– PHU=CHIP, EXTENSIONS=CELL: Type METADATAwith the component keywords being the exten-
sion names and the values the corresponding cell type.

– PHU=CHIP, EXTENSIONS=NONE: Type STR with the value being the cell types separated by com-
mas or whitespace.

• CELLS of type METADATA with the component keywords being the cell names or types, each of type
METADATA. Within each cell should be specified various PS concept values appropriate for each cell.

An example:

# How to read this data
PHU STR FPA # The FITS file represents an entire FPA
EXTENSIONS STR CELL # The extensions represent cells

# What’s in the FITS file?
CONTENTS METADATA

# Extension name, chip name:type
amp00 STR ccd00:left
amp01 STR ccd00:right
amp02 STR ccd01:left
amp03 STR ccd01:right
amp04 STR ccd02:left

END

# Specify the cell data
CELLS METADATA

left METADATA # Left amplifier
CELL.BIASSEC STR BIASSEC
CELL.TRIMSEC STR DATASEC
CELL.PARITY S32 1

END
right METADATA # Right amplifier

# This cell is read out in the opposite direction
CELL.BIASSEC STR BIASSEC
CELL.TRIMSEC STR [1025:2048,1:2048]
CELL.PARITY S32 -1

END
END

Observe how the CONTENTS specifies the extension name, which we know from the EXTENSIONS is a cell, and that
each extension is associated with a chip, and has a cell type.
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2.2.2.2 Deriving concept values

The PS concepts are described in more detail in §2.3. Basically, astronomical cameras generally store the important details
(“concepts”) in different ways. This is generally manifested in the choice of different FITS header keywords to describe
the same concept, but one can also imagine deriving values from a database or a known default.

We therefore specify the following keywords:

• TRANSLATION of type METADATA is a translation table for understanding PS concepts in terms of FITS
headers. The PS concept (keyword) is derived from the FITS header given in the value.

• DATABASE of type METADATA is a formula for obtaining a PS concept from the database. Each component
is of a user-specified type containing TABLE, COLUMN, GIVENDBCOL and GIVENPS. The idea is that to
obtain the value of a PS concept, one refers to a particular COLUMN in a particular TABLE, where the value of
certain PS concepts (GIVENPS; multiple values separated by a comma or semicolon) match certain database
columns (GIVENDBCOL; multiple values separated by a comma or semicolon).

• DEFAULTS of type METADATA is a set of default values of PS concepts for the camera. The PS concept
(keyword) is assigned the value. There is also limited dependency allowed; see §2.3.

An example:

# How to translate PS concepts into FITS headers
TRANSLATION METADATA

FPA.NAME STR EXPNUM
FPA.AIRMASS STR AIRMASS
FPA.FILTER STR FILTER
FPA.POSANGLE STR ROTANGLE
FPA.RA STR RA
FPA.DEC STR DEC
FPA.RADECSYS STR RADECSYS
FPA.MJD STR MJD-OBS
CELL.EXPOSURE STR EXPTIME
CELL.DARKTIME STR DARKTIME
CELL.XBIN STR CCDBIN1
CELL.YBIN STR CCDBIN2
CELL.SATURATION STR SATURATE

END

# Default PS concepts that may be specified by value
DEFAULTS METADATA

CELL.BAD S32 0
CELL.PARITY.DEPEND STR CHIP.NAME
CELL.PARITY METADATA

amp00 S32 1
amp01 S32 -1
amp02 S32 1
amp03 S32 -1

END
END

# How to translate PS concepts into database lookups
DATABASE METADATA

TYPE dbEntry TABLE COLUMN GIVENDBCOL GIVENPS
CELL.GAIN dbEntry Camera gain chipId,cellId CHIP.NAME,CELL.NAME
CELL.READNOISE dbEntry Camera readNoise chipId,cellId CHIP.NAME,CELL.NAME

END

The .DEPEND entry in the DEFAULTS will be explained in §2.3.
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2.2.2.3 Indentification by rule

The function pmConfigCameraFromHeader requires that the camera configuration also contains a rule on how to
recognise that a FITS header comes from that camera.

We therefore specify another keyword: RULE of type METADATA: Contains a list of FITS headers keywords and values
(of the appropriate type) against which actual headers are compared to determine if it matches the camera type.

An example is:

# How to identify this type
RULE METADATA

TELESCOP STR CFHT 3.6m
DETECTOR STR MegaCam
EXTEND BOOL T
NEXTEND S32 72

END

2.2.2.4 Recipes

The camera configuration file must also contain filenames for the recipe configuration files. We include RECIPES of type
METADATA with component keywords being the various recipe names and the values (of type STR) the corresponding
recipe configuration filename.

An example:

# Recipes for LRIS
RECIPES METADATA

PHASE1 STR lris_phase1.config
PHASE2 STR lris_phase2.config

PHASE4 STR lris_phase4.config
END

2.2.3 Recipe Configuration

The contents of the recipe configuration file are dependent upon the particular module, and hence are not specified
here at this time. (TBD)

2.3 PS Concepts

Each image has associated with it what we will call concepts (for want of a better word). These are values corresponding
to general quantities and qualities necessary to understand and interpret the data such as airmass, date, read noise and filter.
The values of each of the below concepts shall be determined when the FPA is read into memory (via pmFPARead), and
stored at the appropriate level in the focal plane hierarchy.

Below is a list of concepts that the IPP requires, with the expected type and a short description.

• FPA.AIRMASS (F32): Airmass at which the observation is made (boresight).

• FPA.FILTER (STR): Filter used in observation
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• FPA.POSANGLE (F32): Position angle for camera

• FPA.RA (F64): Right Ascension of boresight in radians

• FPA.DEC (F64): Declination of boresight in radians

• FPA.RADECSYS (STR): System of RA,Dec (e.g., J2000 or ICRS)

• FPA.NAME (STR): An identifier (e.g., observation number) for the FPA instance

• CHIP.NAME (STR): The name of the chip (unique within the FPA) — set at FITS read

• CELL.NAME (STR): The name of the cell (unique within the parent chip) — set at FITS read

• CELL.TIME (psTime): Time of observation start

• CELL.READDIR (S32): Read direction: line (1) or column (2)

• CELL.BIASSEC (STR): Overscan region(s)

• CELL.TRIMSEC (STR): Trim region

• CELL.GAIN (F32): CCD gain (e/ADU)

• CELL.READNOISE (F32): CCD read noise (e)

• CELL.SATURATION (F32): CCD saturation point (ADU)

• CELL.BAD (F32): CCD bad pixel point (ADU)

• CELL.XBIN (S32): CCD binning in x

• CELL.YBIN (S32): CCD binning in y

• CELL.XPARITY (S32): Direction of CCD readout in x relative to the rest of the chip

• CELL.YPARITY (S32): Direction of CCD readout in y relative to the rest of the chip

• CELL.EXPOSURE (F32): Exposure time of image (sec)

• CELL.DARKTIME (F32): Dark time for image (sec)

Note that CELL.EXPOSURE, CELL.DARKTIME and CELL.TIME should actually be specified at the readout
level. However, at this present time, we’re not sure how these should be specified, and so we move them up to the
cell level and assume that all readouts are of the same exposure and dark time. (TBD)

For different camera systems, these concepts are not always known by the same name, nor are they generally obtained in
the same manner, and so their source or value must be specified in the camera configuration file. The value of a concept
shall be found by searching in the following order:

• The cell data from the CELLS metadata in the camera configuration.

• The FITS header via the TRANSLATION table.

• The DATABASE lookup.

• The DEFAULTS value.

After ingest (performed by pmFPARead, the user may safely assume that all of the above concepts exist (defined at the
appropriate level), is of the specified type and in the specified format.
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2.3.1 Dependencies for defaults

In the DEFAULTS table in the camera configuration, we allow the specification of the concept with an additional suffix,
DEPEND. The value (of type STR) of the CONCEPT.DEPEND is the name of a concept on which the first concept depends.
For example, it might depend on the chip name. Then the first concept becomes of type METADATA, with the component
keywords being the value of the second concept (on which the first depends). To avoid infinite recursion, no further
dependency is permitted. We also allow an entry CONCEPT.DEFAULT specifiying the default value of the concept if a
match is not made with the dependcency list. An example of the dependency:

# Default PS concepts that may be specified by value
DEFAULTS METADATA

CELL.GAIN.DEPEND STR CHIP.NAME
CELL.GAIN.DEFAULT STR 1.0
CELL.GAIN METADATA

ccd00 F32 1.2
ccd01 F32 3.4
ccd02 F32 5.6

END
END

2.3.2 FORMATS

Because of the variety of methods for specifying these concepts (especially in FITS headers), we must also specify addi-
tional information in the camera configuration that specifies how to interpret the data provided. These are provided in an
entry FORMATS (of type METADATA) in the camera configuration. Within the FORMATS metadata, there is a string for
each of the concepts that requires a format to be specified.

2.3.2.1 CELL.TIME

The time at which the shutter opens is represented in a variety of ways in FITS files, so care must be taken to specify what
the format is in the file under consideration. Permitted values of CELL.TIME.FORMAT are:

• JD: The value pointed to by CELL.TIME is to be interpreted as a Julian Date.

• MJD: The value pointed to by CELL.TIME is to be interpreted as a Modified Julian Date.

• ISO: The value pointed to by CELL.TIME is to be interpreted as an ISO date-time (yyyy-mm-
ddThh:mm:ss.ss).

• SEPARATE: The date and time are specified separately, and the CELL.TIME contains the headers for the
date and the time separated by whitespace or a comma. Then it is necessary to add additional qualifiers to
specify the formats of these:

– PRE2000: The year is in the old style two-digit format popular before the year 2000, and it should be
assumed that the date is in the twentieth century.

– BACKWARDS: The date is in the format dd-mm-yyyy or dd/mm/yyyy.

– SOD: The time is specified as seconds-of-day.
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Note that the FITS standard is that the time in the header refers to the start of the observation.

the PRE2000 and BACKWARDS qualifiers should be replace with explicit format definitions in the form
YYYY/MM/DD (TBD)

In the future, we might add additional qualifiers that calculate the start time of the observation based on someone
foolishly putting the end- or mid-time in the header. (TBD)

Should we move CELL.TIMESYS into the format as well? (TBD)

2.3.2.2 FPA.RA and FPA.DEC

The RA and Declination of the boresight might be specified in a few ways. We need to specify both how the value is
interpreted and the units. FPA.RA.FORMAT and FPA.DEC.FORMAT should be one of the following:

• HOURS: The value pointed to by the concept should be interpreted as being in hours.

• DEGREES: The value pointed to by the concept should be interpreted as being in degrees.

• RADIANS: The value pointed to by the concept should be interpreted as being in radians.

How the value is interpreted can be determined from the type of the header: if it is of type STR, then we can reasonably
assume that it is in sexagesimal format with colons or spaces as separators; and if it is of type F32 (or F64), then we can
assume that it is in decimal format.

2.3.3 Implicit format information

While details like the units of the right ascension in the header must be specified explicitly, some other details can be
determined from implicit information.

• FPA.RA and FPA.DEC: if the value on ingest is of type STRING, then it may be interpreted as sexagesimal
notation, “dd:mm:ss.ss”, or “dd:mm.mmm”. A space may be used instead of a colon to separate the values.
Otherwise, if the value is of a numerical type (F32 or F64), then that is the appropriate value.

• CELL.XBIN and CELL.YBIN: if the value on ingest is of type STRING, then it may be interpreted as “x,y”,
where x is the binning in x, and y is the binning in y. A space may be used instead of a comma, and there may
even be a space before or after the comma (or both). Otherwise, if the value is of a numerical type (S32, etc),
then that is the appropriate value.

• CELL.BIASSEC and CELL.TRIMSEC: These values on ingest should always be of type STRING. If
they contain a square bracket, then they may be interpreted as a list of standard region specifications,
“[x0:x1,y0:y1];[x2:x3,y2:y3];...”, where the semi-colon may be replaced by spaces. Other-
wise, the string may be interpreted as a FITS header (or headers, separated by spaces, commas or semi-colons)
that contains the appropriate values.

the use of implicit interpretation of formats should be discouraged: format interpretation guides should be provided
(TBD)
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2.4 Configuration APIs

bool pmConfigRead(psMetadata **site, psMetadata **camera, psMetadata **recipe,
int *argc, char **argv, const char *recipeName);

psMetadata *pmConfigCameraFromHeader(const psMetadata *site, const psMetadata *header);
psMetadata *pmConfigRecipeFromCamera(const psMetadata *camera, const char *recipeName);

pmConfigRead shall load the site configuration (according to the above rule for determining the source). The
camera configuration shall also be loaded if it is specified on the command line (argc, argv); otherwise it shall
be set to NULL. The recipe shall also be loaded from the command line (if specified) or, if the camera configuration has
been loaded, from the camera configuration and recipe specification therein (see below). In dealing with the command line
parameters, the functions shall use the appropriate functions in psLib to retrieve and remove the relevant options from the
argument list; this simplifies assignment of the mandatory arguments, since all the optional command line arguments are
removed leaving only the mandatory arguments. The following psLib setups shall also be performed if they are specified
in the site configuration:

• the function shall call psTimeInitializewith the configuration file specified by TIME.

• the function shall call psLogSetLevelwith the logging level specified by LOGLEVEL.

• the function shall call psLogSetFormatwith the log format specified by LOGFORMAT.

• the function shall call psTraceSetLevelwith the component names and trace levels specified by the TRACE.

Note that additional log/trace command-line options may be specified and interpretted using the
psArgumentVerbosity function from psLib. These options should (in the case of logging) override the
configuration-supplied information or (in the case of tracing) supplement it.

pmConfigCameraFromHeader shall load the camera configuration based on the contents of the FITS header,
using the list of known cameras contained in the site configuration. If more than one camera matches the FITS header,
a warning shall be generated and the first matching camera returned.

pmConfigRecipeFromCamera shall load the recipe configuration based on the recipeName and the list of
known recipes contained in the camera configuration (details below).

bool pmConfigValidateCamera(const psMetadata *camera, const psMetadata *header);

This function, used by pmConfigCameraFromHeader, shall return true if the FITS header matches the rule
contained in the camera configuration (see §2.2.2.3); otherwise it shall return false.

psDB *pmConfigDB(psMetadata *site);

pmConfigDB shall use the site configuration data to open a database handle. This is fairly straightforward at the
moment, but will change when we beef up security. (TBD)
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2.4.1 Example usage

The following is provided as an example of how the above functions are envisioned in use.

int main(int argc, char *argv[])
{

// Parse other command-line arguments here
psMetadata *site = NULL; // Site configuration
psMetadata *camera = NULL; // Camera configuration
psMetadata *recipe = NULL; // Recipe configuration
if (! pmConfigRead(&site, &camera, &recipe, &argc, argv, "moduleName")) {

psLogMsg("moduleName", PS_LOG_ERROR, "Can’t find site configuration!\n");
exit(EXIT_FAILURE);

}
// Parse other command-line arguments here

// The command-line argument list now contains only mandatory arguments
// Assume the first of these is an input image
char *imageName = argv[1]; // Name of FITS file
psFits *imageFH = psFitsOpen(imageName, "r"); // File handle for FITS file
if (! imageFH) {

psLogMsg("moduleName", PS_LOG_ERROR, "Can’t open input image %s\n", imageName);
exit(EXIT_FAILURE);

}
psMetadata *header = psFitsReadHeader(NULL, imageFH); // FITS header

if (!camera && !(camera = pmConfigCameraFromHeader(site, header))) {
psLogMsg("moduleName", PS_LOG_ERROR, "Can’t find camera configuration!\n");
exit(EXIT_FAILURE);

}

if (! recipe && !(recipe = pmConfigRecipeFromCamera(camera, "moduleName"))) {
psLogMsg("moduleName", PS_LOG_ERROR, "Can’t find recipe configuration!\n");
exit(EXIT_FAILURE);

}

// Now go on and do stuff
....

}

3 Focal Plane

3.1 Overview

In PSLib, we have defined a basic container for a single 2D collection of pixels (psImage), along with basic operations to
manipulate the image pixels. For astronomical applications, this data structure is insufficient for two reasons. First, it does
not provide sufficient additional metadata to describe the data in detail. Second, astronomy applications frequently involve
multiple, related images. For Pan-STARRS, and for general astronomical applications, we require a richer collection of
data structures which describe a very general image concept. We have defined several layers in the hierarchy which are
necessary to describe the image data which will be produced by the Pan-STARRS GigaPixel Cameras as well as other
standard astronomical images.

A simple 2D image is the basic data unit for much of astronomical imaging: if we consider various optical and IR array
cameras, a single readout of the detector produces a collection of pixel measurements which is well represented as a single
2D image. We define our lowest-level astronomical image structure, pmReadout, to contain the pixels produced by a
single readout of the detector, along with metadata needed to define that readout: the origin and binning of the image
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relative to the original detector pixels explicitly in the structure, and pointers to the general metadata and derived objects,
if any.

A single detector may be read multiple times in sequence. For example, infrared detectors frequently produce an image
immediately after the detector is reset followed by an image after the basic exposure is complete. Both readouts correspond
to the same pixels, though the binning or rastering may be different between the two readouts. Another example is the
video sequence produced by the Pan-STARRS GigaPixel Camera guide cells, each of which represents a series of many
images from a subraster of pixels in the detector readout portion. The second level of our image container hierarchy,
pmCell, consists of a collection of readouts from a single detector.

In the Pan-STARRS GigaPixel camera, the basic readout region is a fraction of the full imaging area of a single CCD chip.
The chip is divided into 64 cells, any fraction of which may have been readout for a given exposure. In other cameras, such
as Megacam at CFHT, the individual CCDs have multiple amplifiers addressing contiguous portions of the detector. In
such cameras, each amplifier produces a separate collection of pixels. In the third level of our image container hierarchy,
the data structure pmChip represents a collection of different cells.

The top level of our image container hierarchy is a complete focal plane array (pmFPA). This structure represents the
collection of chips in the camera, all of which are read out in a given exposure.

For example, take a mosaic camera consisting of eight 2k × 4k CCDs, each of which is read out through two amplifiers.
Then there would be sixteen cells in total, each of which is presumably 1k × 4k. There would be eight chips, each
consisting of two cells, and the focal plane consists of these eight chips.

As another example, consider an observation by PS-1. The focal plane would consist of 60 chips, each of which consist
of 64 cells (or less; a few cells may be dead). Some cells (those containing guide stars for the orthogonal transfer) will
contain multiple readouts.

These data structures represent containers with which to carry around the collection of related image data. There is no
requirement on the functions or the structures that each instance of one of these data structures represent the physical
hardware. For example, it is not necessary that an instance of pmFPA always carry the data for all 60 GigaPixel Camera
OTAs. The usage of these structures is such that all astronomical operations which apply to a CCD image should be
performed on an instance of pmFPA. If a particular circumstance only requires a single 2D image, then that is represented
by an instance of pmFPA with one pmChip, which in turn has one pmCell, which in turn has one pmReadout.

The data structures defined below provide two additional features beyond the hierarchy of relationships. First, each level
of the hierarchy includes hooks for carrying metadata to provide the PS concepts and analysis metadata that would be
appropriate for that level. The functions within PSLib do not specify the contents of those metadata containers.

While the psMetadata pointers provide a mechanism to carry generic information about the image, the hierarchy of
data structures also provides an explicit set of information defining the geometrical relationships between the levels of the
hierarchy. Two types of information are provided. In the first case, basic offsets (and in the case of the readouts, binning
and flips) are defined to specify the location of a given pmCell with respect to its containing pmChip in the assumption
that the pixels in the entire focal plane array are laid out on a uniform grid. This is a crude approximation, and cannot be
assumed for careful astrometric analysis, but it can be used as a starting point or to place the the pixels in a test image. For
higher precision, detailed astrometric transformations between one frame and the next are also provided.

In the future, it may be worthwhile to migrate all of these additional pieces to the psMetadata since there is no
pressing need to have them visible in the data structures (TBD)
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3.2 Image Data Container Hierarchy

Here we specify the contents of the focal plane hierarchy: pmReadout, pmCell, pmChip and pmFPA. Many of the
components of these are similar. All but the pmFPA contain offsets from the level above (col0,row0), and a link to the
parent. All but the pmReadout contain a private pointer to FITS data and more detailed astrometric transforms. Each
contains an analysis metadata container which is intended to store results of analyses (e.g., the r.m.s. of the overscan
fit).

At what stage are the offsets (col0,row0) set, and how are they known? (TBD)

3.2.1 A Readout

A readout is the result of a single read of a cell (or a portion thereof). It contains the offset from the lower-left corner of
the chip, in the case that the CCD was windowed, as well as the binning factors and parity (if the binning value is negative,
then the parity is reversed). It also contains the pixel data (with corresponding mask and weight), metadata container for
the analysis, and a link to the parent.

typedef struct {
// Position on the cell
int col0; // Offset from the left of cell.
int row0; // Offset from the bottom of cell.
int colBins; // Amount of binning in x-dimension and parity (from sign)
int rowBins; // Amount of binning in y-dimension and parity (from sign)
// Information
psImage *image; // Imaging area of readout
psImage *mask; // Mask for image
psImage *weight; // Weight for image
psList *bias; // List of bias section (sub-)images
psMetadata *analysis; // Readout-level analysis metadata
pmCell *parent; // Parent cell

} pmReadout;

The constructor for pmReadout shall be:

pmReadout *pmReadoutAlloc(pmCell *cell);

The constructor shall make an empty pmReadout. If the parent cell is not NULL, the parent link is made and the
readout shall be placed in the parent’s array of readouts. The metadata containers shall be allocated. All other pointers
in the structure shall be initialized to NULL.

3.2.2 A Cell

A cell consists of one or more readouts (usually only one except in the case that the cell has been used for fast guiding, or
similar situations). It has values which specifies the position of the cell on the chip for rough positioning, along with more
precise coordinate transforms from the cell to the chip and, as a convenience, from the cell directly to the focal plane. It
is expected that these transforms will consist of two first-order 2D polynomials, simply specifying a translation, rotation
and magnification; hence they are easily inverted, and there is no need to add reverse transformations. We also add an
additional transformation, which is intended to provide a “quick and dirty” transform from the cell coordinates to the sky;
this transformation not guaranteed to be as precise as the “standard” transformation of Cell → Chip → Focal Plane →
Tangent Plane→ Sky, but will be faster. The cell also contains metadata containers for the concepts and analysis, a link
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to the parent, and a container for the FITS data, if that corresponds to this level. A boolean indicates whether the cell is of
interest, allowing it to be excluded from analysis.

typedef struct {
// Offset specifying position on chip
int col0; // Offset from the left of chip.
int row0; // Offset from the bottom of chip.
// Astrometric transformations
psPlaneTransform* toChip; // Transformations from cell to chip coordinates
psPlaneTransform* toFPA; // Transformations from cell to FPA coordinates
psPlaneTransform* toSky; // Transformations from cell to sky coordinates
// Information
psMetadata *concepts; // Cache for PS concepts
psMetadata *camera; // Camera information
psMetadata *analysis; // Cell-level analysis metadata
psArray *readouts; // The readouts (referred to by number)
pmChip *parent; // Parent chip
bool valid; // Do we bother about reading and working with this cell?
p_pmHDU *hdu; // FITS data

} pmCell;

The constructor for pmCell shall be:

pmCell *pmCellAlloc(pmChip *chip, psMetadata *cameraData, psString name);

The constructor shall make an empty pmCell. If the parent chip is not NULL, the parent link is made and the cell
shall be placed in the parent’s array of cells. The readouts array shall be allocated with a zero size, and the metadata
containers constructed. The cell’s camera pointer shall be set to the provided cameraData, and the name shall be
used to set CELL.NAME in the concepts. All other pointers in the structure shall be initialized to NULL.

3.2.3 A Chip

A chip consists of one or more cells (according to the number of amplifiers on the device). The chip contains metadata
containers for the concepts and analysis, a link to the parent, and pointers to the pointers to the various FITS data, if that
corresponds to this level. For astrometry, in addition to the rough positioning information, it contains a coordinate trans-
form from the chip to the focal plane. It is expected that this transform will consist of two second-order 2D polynomials;
hence we think that it is prudent to include a reverse transformation which will be derived from numerically inverting the
forward transformation. A boolean indicates whether the chip is of interest, allowing it to be excluded from analysis.

typedef struct {
// Offset specifying position on focal plane
int col0; // Offset from the left of FPA.
int row0; // Offset from the bottom of FPA.
// Astrometric transformations
psPlaneTransform* toFPA; // Transformation from chip to FPA coordinates
psPlaneTransform* fromFPA; // Transformation from FPA to chip coordinates
// Information
psMetadata *concepts; // Cache for PS concepts
psMetadata *analysis; // Chip-level analysis metadata
psArray *cells; // The cells (referred to by name)
pmFPA *parent; // Parent FPA
bool valid; // Do we bother about reading and working with this chip?
p_pmHDU *hdu; // FITS data

} pmChip;

The constructor for pmChip shall be:
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pmChip *pmChipAlloc(pmFPA *fpa, psString name);

The constructor shall make an empty pmChip. If the parent fpa is not NULL, the parent link is made and the chip
shall be placed in the parent’s array of chips. The cells array shall be allocated with a zero size, and the metadata
containers constructed. The name shall be used to set CHIP.NAME in the concepts. All other pointers in the structure
shall be initialized to NULL.

3.2.4 A Focal Plane

A focal plane consists of one or more chips (according to the number of pieces of contiguous silicon). It contains metadata
containers for the concepts and analysis, a link to the parent, and pointers to the FITS header, if that corresponds to this
level (the FPA may be the PHU, but will not ever contain pixels). For astrometry, it contains a transformation from the
focal plane to the tangent plane and the fixed pattern residuals. It is expected that the transformation will consist of two
4D polynomials (i.e. a function of two coordinates in position, the magnitude of the object, and the color of the object)
in order to correct for optical distortions and the effects of the atmosphere; hence we think that it is prudent to include a
reverse transformation which will be derived from numerically inverting the forward transformation.

typedef struct {
// Astrometric transformations
psPlaneDistort* fromTangentPlane; // Transformation from tangent plane to focal plane
psPlaneDistort* toTangentPlane; // Transformation from focal plane to tangent plane
psProjection *projection; // Projection from tangent plane to sky
// Information
psMetadata *concepts; // Cache for PS concepts
psMetadata *analysis; // FPA-level analysis metadata
const psMetadata *camera; // Camera configuration
psArray *chips; // The chips
p_pmHDU *hdu; // FITS data
psMetadata *phu; // Primary Header

} pmFPA;

The constructor for pmFPA shall be:

pmFPA *pmFPAAlloc(const psMetadata *camera);

The constructor shall make an empty pmFPA. The chips array shall be allocated with a zero size, the camera and db
pointers set to the values provided, and the concepts metadata constructed. All other pointers in the structure shall be
initialized to NULL.

The inclusion of hierarchical links pointing both down (via the arrays) and up (via the parent) could make for difficulties.
For this reason, we specify a utility function to manage the collection of upward-pointing links:

bool pmFPACheckParents(pmFPA *fpa);

This function checks the validity of the parent links in the FPA hierarchy. If a parent link is not set (or not set
correctly), it is corrected, and the function shall return false. If all the parent pointers were correct, the function shall
return true.

Each of the levels in the hierarchy have a place to hold a p_pmHDU, which is the disk representation of the image:
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psFPA(x,y)
=psChip.x0,y0

psChip(x,y)
=psCell.x0,y0

psCell(x,y) = 
psReadout.x0,y0
(psReadout.pX = 1)

psFPA(x,y) =
psChip.x0,y0 +
psCell.x0,y0 + 
psReadout.x0,y0 +
psReadout.pX,pY *
psReadout.xBin,yBin *
psImage.data(x,y)

psCell(x,y) = 
psReadout.x0,y0
(psReadout.pX = -1)

Figure 1: Camera Pixel Layout

typedef struct {
const char *extname; // Extension name, if it corresponds to this level
psMetadata *header; // The FITS header, if it corresponds to this level
psArray *images; // The pixel data, if it corresponds to this level
psArray *masks; // The mask data, if it corresponds to this level
psArray *weights; // The weight data, if it corresponds to this level

} p_pmHDU;

3.3 Detector Coordinate Transformations

These container levels also include in their definition the information needed to transform the coordinates in one of the
levels to the coordinate system relevant at the higher levels.

The data structures define the basic coordinate relationships between all of these data elements. A set of offsets for each
level in the data hierarchy specifies the location of the particular set of pixels in the next level of the hierarchy. This is
illustrated in Figure 1. These offsets may be used to define the complete camera layout in the approximating assumption
that all pixels in the camera are laid out on a single linear pixel grid. This approximate is sufficient for many basic
operations. For more detail, the precise astrometric relationship between each level of the hierarchy may also be made
available in the metadata of the data structures.

In practice, a single readout from a detector may represent only a subset of the complete set of pixels addressed by the cell.
The readout may also have binning applied in both of the two dimensions. There may also be overscan and pre-scan regions
in the set of pixels. Finally, the readout direction is not always the same for all detector amplifiers. As shown in Figure 1,
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these different concepts are represented in the data hierarchy. The coordinate of the origin of the data grid for one level of
the hierarchy in the grid of the containing hierarchy is defined for each data level. For example, the origin of the coordinates
for a single chip are located in the camera grid at pmChip.cell0,row0. The pmReadout data level has additional
information to specify the details of the readout process. The elements pmReadout.colBins,rowBins specify the
binning factor in the two dimensions, while the sign indicates the parity of the specific readout (readout direction). Note
that the value of pmReadout.col0,row0must be assigned in such a way that it represents the coordinate of the origin
pixel in the actual image: the overscan or pre-scan pixels must be accounted for. Putting all of these element together, we
can see that the pixel coordinates in the camera grid may be determined from the pixel coordinates in the image grid from
the following relationship:

pmFPA(cell,row) = pmChip.cell0,row0 + pmCell.cell0,row0 + pmReadout.cell0,row0 +
pmReadout.cellParity,rowParity * pmReadout.cellBins,rowBins *
psImage.data(cell,row)

3.4 Input/Output of a Focal Plane Hierarchy

We specify two functions to construct a focal plane hierarchy from a camera configuration and read from a FITS file.
These two operations are decoupled so that the big investment of memory from the read only occurs when it is necessary.

pmFPA *pmFPAConstruct(const psMetadata *camera, psDB *db);
bool pmFPARead(pmFPA *fpa, psFits *fits);

pmFPAConstruct shall construct a focal plane hierarchy from a camera configuration. A db handle is also provided
so that may be set in the pmFPA. The resultant pmFPA and its lower-down components shall be ready for to read a FITS
file into it by setting the extname pointers at the appropriate levels to the appropriate FITS extension name.

pmFPARead shall read a fits file (the contents of which are described by the previous camera configuration) into an
extant fpa. This involves reading the headers and pixels, as well as ingesting all the concepts.

bool pmFPASelectChip(pmFPA *fpa, int chipNum);
int pmFPAExcludeChip(pmFPA *fpa, int chipNum);

These functions are provided to set the valid booleans within an fpa so that only certain chips within the FITS file are
read in.

pmFPASelectChip shall set valid to true for the specified chip number (chipNum), and all other chips shall have
valid set to false. In the event that the specified chip number does not exist within the fpa, the function shall return
false.

pmFPAExcludeChip shall set valid to false only for the specified chip number (chipNum). In the event that the
specified chip number does not exist within the fpa, the function shall generate a warning, and perform no action. The
function shall return the number of chips within the fpa that have valid set to true.

make these functions richer: select by extention, extname, cell, options to invalidate all / validate all, etc (TBD)

bool pmFPAMorph(pmFPA *toFPA, pmFPA *fromFPA, bool positionDependent, int chipNum, int cellNum);
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pmFPAMorph shall morph the fromFPA focal plane hierarchy to the toFPA focal plane hierarchy. This allows us to
write the pixels out using a different (though consistent) camera configuration. In the event that the toFPA has different
levels than the fromFPA, only the chip and cell specified by chipNum and cellNum shall be written; if the levels are
the same, these numbers are ignored. This function shall break apart pixel regions or splice them together where required
in order to satisfy the demands of the toFPA. How the image and overscan regions are spliced together depends on the
value of positionDependent: If positionDependent is true, then the overscan regions go to the low end of
the spliced image if i < N/2, and to the high end of the spliced image if i >= N/2, where i (zero-offset) is the cell
number, and N is the total number of cells; if positionDependent is false, then the overscan regions all go to the
high end of the spliced image. Care should be taken to check the CELL.READDIR, so the orientation of the overscan
regions is known. If the bias and trim sections are specified by headers in the toFPA, these shall be updated appropriately;
otherwise, the function is permitted to fail with a suitable error message, in which case it shall return false.

bool pmFPAWrite(psFits *fits, pmFPA *fpa);

pmFPAWrite shall write the focal plane hierarchy, fpa, to the specified fits file, returning true upon success and
false otherwise. The fpa should contain sufficient information with which to write the FITS images.

pmFPAWriteMask(psFits *fits, pmFPA *fpa);

pmFPAWriteMask is very similar to pmFPAWrite, but it shall write the mask elements of the pmReadouts com-
prising the fpa.

pmFPAWriteWeight(psFits *fits, pmFPA *fpa);

pmFPAWriteWeight is very similar to pmFPAWrite, but it shall write the weight elements of the pmReadouts
comprising the fpa.

4 Astrometry

Astrometry is a basic functionality required for the IPP that will be used repeatedly, both for low-precision (roughly where
is my favorite object?) and high-precision (what is the proper motion of this star?). As such, it must be flexible, yet robust.

4.1 Coordinate frames

There are five coordinate frames that we need to worry about for the purposes of astrometry:

• Cell: (x, y) in pixels — raw coordinates;

• Chip: (X,Y ) in pixels — the location on the silicon;

• Focal Plane: (p, q) in microns — the location on the focal plane;

• Tangent Plane: (l,m) in arcsec from the telescope boresight; and

• Sky: (RA,Dec) — ICRS.
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The following steps are required to convert from the cell coordinates to the sky:

• Cell←→ Chip: two 2D polynomials, (X,Y ) = f(x, y);

• Chip←→ FP: two 2D polynomials, (p, q) = g(X,Y );

• FP ←→ TP: two 4D polynomials, (l,m) = h(p, q,m, c), where m and c are the magnitude and color of the
object, respectively; and

• TP←→ Sky: transformation to the sky using pre-computed coefficients for each pointing.

Note that the transformation between the Focal Plane and the Tangent Plane is a four-dimensional polynomial, in order to
account for any possible dependencies in the astrometry on the stellar magnitude and color; the former serves as a check
for charge transfer inefficiencies, while the latter will correct chromatic refraction, both through the atmosphere and the
corrector lenses.

We require structures to contain each of the above transformations as well as the pixel data.

4.2 Position Finding

We require functions to return the structure containing given coordinates. For example, we want the chip that corresponds
to the focal plane coordinates (p, q) = (−1.234,+5.678). These routines handle the one-to-many problem — i.e., for one
given focal plane coordinate, there are many chips that this coordinate may be correspond to; these functions will select
the correct one.

pmCell *pmCellInFPA (const psPlane *coord, const pmFPA *fpa);
pmChip *pmChipInFPA (const psPlane *coord, const pmFPA *fpa);
pmCell *pmCellInChip(const psPlane *coord, const pmChip *chip);

4.3 Conversion Functions

We require functions to convert between the various coordinate frames (Section 4.1). The hierarchy of the coordinate
frames and the transformations between each are shown in Figure 2. The functions that employ the transformations are
shown in Figure 3. In addition to transformations between each adjoining coordinate frame in the hierarchy, we also
require higher-level functions to convert between the Cell and Sky coordinate frames; these will simply perform the
intermediate steps.

We specify the following functions to convert between coordinates in one type of frame to another type of frame. The
first group consist of unambiguous transformations: from the coordinates in a low-level frame to the coordinates in the
containing higher-level frame, of which only one exists. In all of these functions, the output coordinate structure may be
NULL or may be supplied by the calling function. In the former case, the structure must be allocated; in the latter case, the
supplied structure must be used.

psPlane *pmCoordCellToChip (psPlane *out, const psPlane *in, const pmCell *cell);
% astrometry comes from cell (no need for parent)

which converts coordindates in on the specified cell to the coordinates on the parent chip.
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myCell−>cellToFPA
combines cellToChip
and chipToFPA into
a single low−order
transformation

myFPA−>FPtoTP and myFPA−>TPtoFP specifies
high−order transformation to correct for optical
distortion in the camera, and chromatic effects from
the atmosphere

SLALib to do the transformation
myFPA−>exp contains information allowing

Frame

Cell (x,y)

Chip (X,Y)

Focal Plane (p,q)

Tangent Plane (l,m)

Sky (RA,Dec)

x0, y0 specifies offset from cell origin

myChip−>chipToFPA specifies low−order transformation

myCell−>cellToChip specifies low−order tranformation

provides a quick and dirty
low−order transformation
from a cell to the sky

myCell−>cellToSky

Figure 2: The coordinate systems in the Pan-STARRS IPP, and the relation between each by transformations contained in
the appropriate structures.
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x −= myFrame−>x0;
y −= myFrame−>y0;

x += myFrame−>x0;
y += myFrame−>y0;

psChipInFPA()
psCoordFPAtoChip()

psCellInChip()
psCoordChipToCell()

psCoordCellToSky()
psCoordCellToSkyQuick()
psCoordSkyToCell()

Frame

Cell (x,y)

Chip (X,Y)

Focal Plane (p,q)

Tangent Plane (l,m)

Sky (RA,Dec)

psCoordCellToChip()

psCoordCellToFPA()

psCoordFPAtoTP()

psCoordTPtoSky()

psCoordTPtoFPA()

psCoordSkyToTP()

psCoordCellToFPA()

Figure 3: Conversion between coordinate systems by PSLib.
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psPlane *pmCoordChipToFPA (psPlane *out, const psPlane *in, const pmChip *chip);
% astrometry comes from chip (no need for parent)

which converts the coordinates in on the specified chip to the coordinates on the parent FPA.

psPlane *pmCoordFPAToTP(psPlane *out, const psPlane *in, float color, float mag, const pmFPA *fpa);
% astrometry comes from FPA (no need for parent)

which converts coordinates in on the specified focal plane fpa to tangent plane coordinates, applying the appropriate
distortion terms. The color and magnitude (mag) of the source is necessary in order to perform the distortion between
the focal plane and the tangent plane.

psSphere *pmCoordTPToSky(psSphere *out, const psPlane *in, const psProjection *projection);

which converts the tangent plane coordinates in to (RA,Dec) on the sky, using the specified projection.

psPlane *pmCoordCellToFPA(psPlane *out, const psPlane *in, const pmCell *cell);

which performs the single-step conversion between Cell coordinates in and FPA coordinates.

psSphere *pmCoordCellToSky(psSphere *out, const psPlane *in, float color, float mag, const pmCell *cell);

which converts coordinates on the specified cell to (RA,Dec). This transformation must be performed using the inter-
mediate stage transformations of Cell to Chip, Chip to FPA, FPA to Tangent Plane, Tangent Plane to Sky. The informa-
tion needed for each of these transformations is available in the .parent elements of pmCell and pmChip, and the
pmFPA.projection. The color and magnitude (mag) of the source is necessary in order to perform the distortion
between the focal plane and the tangent plane.

psSphere *pmCoordCellToSkyQuick(psSphere *out, const psPlane *in, const pmCell *cell);

which uses the ’quick-and-dirty’ transformation to convert coordinates on the specified cell to (RA,Dec). This transforma-
tion should use the locally linear transformation specified by the element pmCell.toTP. Although the accuracy of this
transformation is lower than the complete transformation above, the calculation is substantially faster as it only involves
linear transformations.

The following functions convert from high-level frames to the coordinates of contained lower-level frames.

psPlane *pmCoordSkyToTP(psPlane *out, const psSphere *in, const psProjection *projection);

which converts (RA,Dec) coordinates in to tangent plane coords using the specified projection.

psPlane *pmCoordTPToFPA(psPlane *out, const psPlane *in, float color, float mag, const pmFPA *fpa);

which converts the tangent plane coordinates in to focal plane coordinates. The color and magnitude (mag) of the
source is necessary in order to perform the distortion between the focal plane and the tangent plane.
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psPlane *pmCoordFPAToChip (psPlane *out, const psPlane *in, const pmChip *chip);

which converts the specified FPA coordinates in to the coordinates on the given Chip. The specified chip need not contain
the input coordinate. To find the chip which contains a particular coordinate, the function pmChipInFPA, defined above,
should be used.

psPlane *pmCoordChipToCell (psPlane *out, const psPlane *in, const pmCell *cell);

which converts the specified Chip coordinate in to the coordinate on the given Cell. The specified Cell need not contain
the input coordinate. To find the cell which contains a particular coordinate, the function pmCellInChip, defined above,
should be used.

psPlane *pmCoordSkyToCell(psPlane *out, const psSphere *in, float color, float mag, pmCell *cell);

which directly converts (RA,Dec) in to coordinates on the specified cell. The specified cell need not contain the input
coordinates. The color and magnitude (mag) of the source is necessary in order to perform the distortion between the
focal plane and the tangent plane.

psPlane *pmCoordSkyToCellQuick(psPlane *out, const psSphere *in, pmCell *cell);

which directly converts (RA,Dec) in to coordinates on the specified cell. The specified cell need not contain the input
coordinates. This transformation should use the locally linear transformation specified by the element pmCell.toTP.
Although the accuracy of this transformation is lower than the complete transformation above, the calculation is substan-
tially faster as it only involves linear transformations.

4.4 FITS World Coordinate System

The FITS World Coordinate System (WCS) headers are commonly employed with astronomical images in order to relate
pixels to celestial (or otherwise) coordinates. Since it is a FITS standard, we must be able to read and write from WCS
into our internal format. For the time being, we will consider only celestial WCS (i.e., no spectral wavelength calibrations,
etc). Because WCS does not support the multiple layers that we have built for Pan-STARRS, we will use a simple internal
representation: a transformation, which handles any distortions (i.e., goes directly from the coordinate frame of the image
to the tangent plane); and the projection.

bool pmAstromReadWCS(psPlaneTransform **transform, // Output transformation
psProjection **projection, // Output projection
psMetadata *header // Input FITS header

);
bool pmAstromWriteWCS(psMetadata *header, // Output FITS header

psPlaneTransform *transform, // Input transformation
psProjection *projection // Input projection

);

pmAstromReadWCS shall parse the specified FITS header, returning new instances of the transform and
projection that represent the WCS. The function shall return true if it was able to successfully generate the out-
puts; otherwise it shall return false.
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pmAstromWriteWCS shall add WCS keywords to the supplied FITS header that implement the given transform
and projection. The function shall return true if it was able to successfully generate the output; otherwise it shall
return false.

bool pmAstrometrySimplify(psPlaneTransform **transform, // Output transformation
psProjection **projection, // Output projection
pmCell *cell // Cell for which to generate transform and projection

);

pmSimplifyAstrometry shall take a cell and simplify the internal astrometric representation (cell->toFPA
or equivalent, cell->parent->parent->toTangentPlane and cell->parent->parent->grommit) to
a single transform and projection. This allows the subsequent use of pmWriteAstrometry in the case that
we have only the multi-layered Pan-STARRS internal astrometric representation. The function shall return true if it was
able to successfully generate the output; otherwise it shall return false.

4.5 Astrometry Analysis

Astrometry is performed on an astronomical image after a collection of sources in the image have been detected and thier
instrumental positions have been measured. In this collection of tools, the coordinates should be measured in the frame
of the pmReadout portion of the Image Hierarchy. This potentially allows us to measure an astrometric transformation
resulting from the transformation to any of the other coordinate system. For example, it might be necessary to determine
the coordinates of the psReadout pixels relative to the psCell (rather than accept the relationship defined by the
metadata).

For the moment, we define two layers of astrometric analysis which will be performed on typical mosaic images in the
Pan-STARRS IPP: per-chip astrometry and per-mosaic astrometry. In the first case, a collection of detections across a
single chip are used to determine a basic, linear transformation to celestial coordinates. This astrometric analysis can
be used to determine an initial, approximate astrometry for each chip in a mosaic camera, with accurcy limited by the
effects of optical distortion (a few pixels error, typically). In the second case, a collection of detectors on a collection of
chips from a mosaic camera are used to measure the position of the telescope boresight, the camera rotation, the impact
of distortion from the telescope optics, and the chip-to-focal plane transformation resulting from chip placement errors or
possible detector tilts or warps.

The process of performing astrometry involves the following steps:

• Make an initial guess at the celestial coordinates of the raw detections (eg, from metadata or image header
information).

• Determine, and load, stars from an astrometric catalog which may potentially correspond to the raw detections.

• Project both raw and reference stars to a common coordinate frame (here we use the Focal Plane as an appropriate
coordinate system).

• Identify matches between the raw and reference stars.

• Determine the transformations necessary to relate the coordinates of the two sets of stars.

• Convert the measured transformations into appropriate terms in the astrometric elements of the Image Hierarchy.

In this section, we specify several functions which together make possible the above analysis steps.
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4.5.1 Astrometry Objects

We define the following structure to carry the necessary information about each detection.

typedef struct {
psPlane pix;
psPlane FP;
psPlane TP;
psSphere sky;
double mag;

} pmAstromObj;

This structure specifies the coordinate of the detection in each of the four necessary coordinate frames: pix defines the
position in the psReadout frame, FP defines the position in the Focal Plane frame, TP defines the position in the Tangent
Plane frame, sky defines the position on the Celestial Sphere. In addition, a measurement of the brightness is given by
the element Mag. Such a data structure should be used for both the raw and the reference stars. In astrometric processing,
the raw detections will be projected using the best available information to each of these coordinate frames from the pix
coordinates, while the reference detections will be projected to the other frames from the sky coordinates.

The raw detections and the reference stars are both projected to a common coordinate frame for analysis. In these modules,
we use the Focal Plane for this reference frame. After projection to the common frame, it is necessary to determine the
match between corresponding objects in the two lists. In order to match the raw detections to the reference stars, different
methods are used depending on the circumstance.

4.5.2 Matching Stars : Close Match

If the two sets of coordinates are expected to agree very well (ie, the current best-guess astrometric solution is quite close
to the ‘true’ astrometric solution), then it is possible to use the simplest matching process: cross-correlation within a fixed
radius. The following function accepts two sets of pmAstromObj sources and determines the matched objects between
the two lists. The input sources must have been projected to the Focal Plane coordinates (pmAstromObj.FP), and
the supplied options entry must contain the desired match radius (keyword: ASTROM.MATCH.RADIUS). The output
consists an array of pmAstromMatch values, defined below.

psArray *pmAstromRadiusMatch (psArray *starlist1, psArray *starlist2, psMetadata *options);

typedef struct {
int idx1;
int idx2;

} pmAstromMatch;

The pmAstromMatch structure defines the cross-correlation between two arrays. An single such data item specifies that
item number pmAstromMatch.idx1 in the first list corresponds to pmAstromMatch.idx2 in the second list.

4.5.3 Matching Stars : Rough Match

If the two sets of coordinates are not known to agree well, a somewhat different approach is needed. Several algorithms
have been defined in the past to correlate two lists with unknown offsets, and potentially unknown relative rotations and
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scaling. One well-known method is the triangle-match algorithm which searches for similar triangles observed in the
two lists. This algorithm has the advantage of not requiring the rotation or the scale to be well-known in advance. The
disadvantage of the triangle match algorithm is that it is necessarily an O(N 3) process since it is necessary to construct
a substantial fraction of all possible triangles for both input lists. we do not define a triangle match algorithm at this
time (TBD) .

If the two sets of coordinates are not known to agree well, but the relative scale and approximate relative rotation is known,
then a much faster match can be found using pair-pair displacements. In such a case, the two lists can be considered as
having the same coordinate system, with an unknown relative displacement. In this algorithm, all possible pair-wise
differences between the source positions in the two lists are constructed and accumulated in a grid of possible offset
values. The resulting grid is searched for a cluster representing the offset between the two input lists. This algorithm can
only tolerate a small error in the relative scale or the relative rotation of the two coordinate lists. However, this process is
naturally O(N 2), and is thus advantageous over triangle matching in some circumstances. This process can be extended
to allow a larger uncertainty in the relative rotation by allowing the procedure to scan over a range of rotations. We define
the following function to apply this matching algorithm:

pmAstromStats pmAstromGridMatch (psArray *raw, psArray *ref, psMetadata *options);

The input sources must have been projected to the Focal Plane coordinates (pmAstromObj.FP), and the supplied
options entry must contain the following user-defined parameters:

• GRID.OFFSET : maximum allowed displacement in search

• GRID.SCALE : grid bin size in focal-plane coordinate units

• GRID.MIN.ANGLE : minimum tested relative rotation

• GRID.MAX.ANGLE : maximum tested relative rotation

• GRID.DEL.ANGLE : relative rotation step size

Note that the angles are defined as clockwise rotations of raw relative to ref.

This function returns values in the pmAstromStats structure, defined as:

typedef struct {
psPlane center;
psPlane offset;
double angle;
double minMetric;
double minVar;
int nMatch;

} pmAstromStats;

The elements angle and offset define the best rotation and offset; the element nMatch indicates the number of
matched sources which fell within the match bin; the element minVar specifies the variance of the sources within the
match bin; the element minMetric specifies the value of the selection metric for the matched bin. Note that the metric
of choice may not necessarily be either the simple number of sources or the varience. We find that a combination based
on both which enhances the importance of having a well-populated bin with a minimal variance gives good results:
metric = var × N−4. The element center defines the center of rotation used for rotating the raw stars relative to the
ref stars.
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The result of a pmAstromGridMatch may be used to modify a psPlaneTransform structure map. The result of
pmAstromGridMatch can be translated into adjustments of the psPlaneTransform (ie the rotation and offset).
This adjustment is made using the function:

bool pmAstromGridApply (psPlaneTransform *map, pmAstromStats stats);

This function modifies the supplied map entry assuming the adjustments are relative to the provided transformation.

We define two additional functions which are used in pmAstromGridMatch, but which may be useful on their own:

pmAstromStats pmAstromGridAngle (psArray *raw, psArray *ref, psMetadata *options);

This function is identical to pmAstromGridMatch, but is valid for only a single relative rotation. The input config
information need not contain any of the GRID.*.ANGLE entries (they will be ignored).

psArray *pmAstromRotateObj (psArray *old, psPlane center, double angle);

This function accepts an array of pmAstromObj objects and rotates them by the given angle about the given center
coordinate center in the Focal Plane Array coordinates.

4.5.4 Astrometry Fitting Routines

The result of a pmAstromRadiusMatch operation is a list of matched entries between the two input lists. This list may
be used to determine a linear fit between the two sets of matched sources. The following function performs this operation:

bool pmAstromFitFPA (pmFPA *fpa, psArray *st1, psArray *st2, psArray *match, psMetadata *config);

This function accepts the raw and reference source lists and the list of matched entries. It uses the matched list to de-
termine a polynomial transformation between the two coordinate systems. The fitting uses clipping to exclude outliers,
likely representing poor matches. The config element must contain the information ASTROM.NSIGMA (specifying
the number of sigma used in the clipping) and ASTROM.NCLIP (specifying the number of clipping iterations must be
performed). The config element must also specify the order of the polynomial fit (keyword: ASTROM.ORDER). The
result of this fit is a set of modifications of the components of the pmFPA.toTangentPlane transformation, and
the modifications of the reference coordinate of the projection (pmFPA.projection.R,D) and the projection scale
(pmFPA.projection.Xs,Ys). The modifications to pmFPA.toTangentPlane incorporate the rotation compo-
nent of the linear terms and the higher-order terms of the polynomial fits.

An alternative to fitting the rotation of the FPA relative to the Tangent Plane is to treat the fitted transformation
as a measurement of the chip within the FPA. The following function performs this operation in the same way as
pmAstromFitFPA:

bool pmAstromFitChip (pmFPA *fpa, psArray *st1, psArray *st2, psArray *match, psMetadata *config);

This function accepts the raw and reference source lists for a single chip and the list of matched entries. It uses the
matched list to determine a polynomial transformation between the two coordinate systems. The fitting uses clipping to
exclude outliers, likely representing poor matches. The config element must contain the information ASTROM.NSIGMA
(specifying the number of sigma used in the clipping) and ASTROM.NCLIP (specifying the number of clipping iterations
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must be performed). The config element must also specify the order of the polynomial fit (keyword: ASTROM.ORDER).
The result of this fit is a set of modifications of the components of the pmChip.toFPA transformation.

A mosaic represents a particular set of challenges when determining an astrometric solution. There is substantial degener-
acy between the astrometric terms which describe the transformationfrom the chip to the focal plane, and the tranformation
from the focal plane to the tangent plane, in the presence of distortion. The degeneracy can be broken by examining the
distortion component in its effect on the gradient of the sources position residuals rather than in the source positions
themselves. The following function determines the position residual, in the tangent plane, as a function of position in
the focal plane, for a collection of raw measurements and matched reference stars. The configuration data must include
the bin size over which the gradient is measured (keyword: ASTROM.GRAD.BOX). The function returns an array of
pmAstromGradient structures, defined below.

psArray pmAstromMeasureGradients (psArray *starlist1, psArray *starlist2, psArray *match, psMetadata *config);

The following data structure carries the information about the residual gradient of source positions in the tangent plane
(pmAstromObj.TP) as a function of position in the focal plane (pmAstromObj.FP).

typedef struct {
psPlane FP;
psPlane dTPdL;
psPlane dTPdM;

} pmAstromGradient;

The gradient set measured above can be fitted with a pair of 2D polynomials. The resulting fits can then be related back to
the implied polynomials which represent the distortion. The following function performs the fit and applies the result to
the distortion transformation of the supplied pmFPA structure. The configuration variable supplies the polynomial order
(keyword: ASTROM.DISTORT.ORDER).

psArray pmAstromFitDistortion (pmFPA *fpa, psArray *gradients, psMetadata *config);

5 Photometry

This section is to be deferred, and for now consists only of place holders, with no functional items. (TBD)

Photometric observations are performed in an instrumental photometric system, and must be related to other photometric
systems. We require a data structure which defines a photometric system, as well as a structure to define the transformation
between photometric systems.

The photometric system is defined by the psPhotSystem structure. A photometric system is identified by a human-readable
name (ie, SDSS.g, Landolt92.B, GPC1.OTA32.r). Each photometric system is given a unique identifier ID. Observations
taken with a specific camera, detector, and filter represent their own photometric system, and it may be necessary to
perform transformations between these systems. Photometric systems associated with observations from a specific cam-
era/detector/filter combination can be associated with those components.

typedef struct {
const int ID; ///< ID number for this photometric system
const char *name; ///< Name of photometric system
const char *camera; ///< Camera for photometric system
const char *filter; ///< Filter used for photometric system
const char *detector; ///< Detector used for photometric system

} psPhotSystem;
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The following structure defines the transformation between two photometric systems.

typedef struct {
psPhotSystem src; ///< Source photometric system
psPhotSystem dst; ///< Destination photometric system
psPhotSystem pP, pM; ///< Primary color reference
psPhotSystem sP, sM; ///< Secondary color reference
float pA, sA; ///< Color offset for references
psPolynomial3D transform; ///< Transformation from source to destination

} psPhotTransform;

The transformation between two photometric systems may depend on the airmass of the observation and on the colors of
the object of interest. For a specific observation, such a transformations can be defined as a polynomial function of the
color of the star and the airmass of the observations. If sufficient data exists, the transformation between the photometric
systems may include more than one color, constraining the curvature of the stellar spectral energy distributions. This
latter term may be significant for stars which are highly reddened, for example. Derived photometric quantities may
have been corrected for airmass variations, in which case only color terms may be measurable. The structure defines
the transformation between a source photometric system (src) and a target photometric system (dst). The photometric
system of a primary color is defined by pP, pM such that the color is constructed as pP − pM . A secondary color
is defined by sP, sM. For both, a reference color is specified (pA, sA): the polynomial transformation terms refer to
colors in the form pP −pM−pA. The transformation is specified as a 3D polynomial. For a star of magnitude Msrc in the
source photometric system, with additional magnitude information in the other systems MpP, MpM, MsP, MsM, observed
at an airmass of z, the magnitude of the star in the target system Mdst is given by: Mdst = Msrc + transform(z,MpP−

MpM − pA,MsP −MsM − sA).

6 Image Detrending

Image Detrending is the image analysis process wherein the instrumental signatures are removed from the individual
images. This section discusses the modules used for image detrending. The basic image detrending steps are:

• Subtract bias;

• Correct for non-linearity;

• Flat-field;

• Mask bad pixels;

• Subtract the background;

• Mask cosmic rays;

• Mask optical defects;

6.1 Bias subtraction

The bias subtraction module provides a facility to correct detector images for the electronic pedestal introduced by the
readout electronics.

Given an input image and various other parameters, pmSubtractBias shall subtract the bias from the image:
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pmReadout *pmSubtractBias(pmReadout *in, pmOverscanOptions *overscanOpts,
psRegion imageRegion, psList *overscanRegions,
const pmReadout *bias, const pmReadout *dark);

Three types of bias correction may optionally be performed on the input image, in. The first is the subtraction of
an overscan. Multiple overscan regions may be specified and fit as a function of row (or column). The second is the
subtraction of a full-frame bias image. The third is the subtraction of a suitably scaled full-frame dark image.

The input image, in, shall have the bias subtracted in-place. The input image may be of type U16, S32, or F32. The
region of the input image that shall have the overscan or full-frame subtractions applied is specified by imageRegion.

Overscan subtraction is performed if overscanOpts is non-NULL (see §6.1.1). overscanRegions shall be a list of
psRegions that specify the regions that comprise the overscans.

A bias frame shall be subtracted pixel-by-pixel from the input image if bias is non-NULL. If dark is non-NULL, then
the dark image, scaled by the ratio of dark times (from CELL.DARKTIME) shall be subtracted pixel-by-pixel from the
input image. The full-frame subtractions (both bias and dark) should only be performed on the image region specified
by CELL.TRIMSEC. Note that the input image, in, and the bias and dark frames need not be the same size, but
the function shall use the offsets in the image (in->x0 and in->y0) to determine the appropriate offsets to obtain the
correct pixel on the bias. In the event that the bias image is too small (i.e., pixels on the input image refer to pixels
outside the range of the bias image), the function shall generate an error. Any pixels masked in the bias or dark shall
also be masked in the output. The bias and dark images may be copied to the same type as the input image if required.

6.1.1 Overscan subtraction

The options for performing the overscan subtraction are bundled in a pmOverscanOptions:

typedef struct {
// Inputs
bool single; // Reduce all overscan regions to a single value?
bool scanRows; // Scan direction was rows? (otherwise columns)
pmFit fitType; // Type of fit to overscan
unsigned int order; // Order of polynomial, or number of spline pieces
psStats *stat; // Statistic to use when reducing the minor direction
// Outputs
psPolynomial1D *poly; // Result of polynomial fit
psSpline1D *spline; // Result of spline fit

} pmOverscanOptions;

The mode in which the overscan is subtracted is specified by the single boolean. If single is true, then the entire
overscan region is reduced to a single value using the stat. If single is false, the overscan shall be reduced along
the dimension specified by scanRows (rows if scanRows is true; otherwise columns).

If the overscan is not defined for each row/column, pmSubtractBias shall generate an error if fitType is
PM_FIT_NONE; otherwise, the function shall shall generate a warning and the undefined values shall be interpolated
using the provided functional form.

The statistic to use in combining multiple pixels in the prescan/overscan regions is specified by stat.
stat is of type psStats instead of simply psStatsOptions so that clipping levels may be spec-
ified, if desired. In the event that multiple options are specified by stats, a warning shall be
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generated, and the option with the highest priority shall be used, according to the following pri-
ority order: PS_STAT_SAMPLE_MEAN, PS_STAT_SAMPLE_MEDIAN, PS_STAT_CLIPPED_MEAN,
PS_STAT_ROBUST_MEAN, PS_STAT_ROBUST_MEDIAN, PS_STAT_ROBUST_MODE.

fitType is an enumerated type which specifies the type of fit to employed on the overscan vector:

typedef enum {
PM_FIT_NONE, ///< No fit
PM_FIT_POLY_ORD, ///< Fit ordinary polynomial
PM_FIT_POLY_CHEBY, ///< Fit Chebyshev polynomial
PM_FIT_SPLINE ///< Fit cubic splines

} pmFit;

If fitType is PM_FIT_NONE, then the overscan vector is subtracted from the image without fitting. Otherwise, the
overscan vector is fit using the specified functional form, the fit is subtracted from the image, and the poly or spline is
allocated and updated with the results of the fit.

The allocator for a pmOverscanOptions shall be:

pmOverscanOptions *pmOverscanOptionsAlloc(bool single, bool scanRows,
pmFit fitType, unsigned int order,
psStats *stat);

6.2 Non-linearity

We here specify two functions to perform the non-linearity correction, since either (or both) might be used to specify the
correction.

These operations act only on the region of the readout specified by CELL.TRIMSEC.

The first, pmNonLinearityPolynomial shall correct the input image for non-linearity by replacing the flux in each
pixel of the input image, in, with the result of the specified polynomial, coeff, acting on the flux. The API shall be the
following:

pmReadout *pmNonLinearityPolynomial(pmReadout *in, const psPolynomial1D *coeff);

The polynomial coefficients, coeff, will be supplied by the caller, likely from the image metadata.

The second function, pmNonLinearityLookup shall correct the input image for non-linearity by using a lookup table.
The API shall be the following:

pmReadout *pmNonLinearityLookup(pmReadout *in, const char *filename);

For each pixel in the input image, the function shall replace the flux with the corresponding value from the supplied
lookup table, specified by the filename. The lookup table file shall consist of two columns of data, the first being the
original flux value and the second being the replaced flux value. The file shall be in a format suitable for reading by
psLookupTableRead.

Both pmNonLinearityPolynomial and pmNonLinearityLookup shall modify the input image in-place. The
input image may be of type U16, S32, or F32.
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6.3 Flat-fielding

Given an input image and a flat-field image, pmFlatField shall divide the input image by the flat-field image and return
it in place, updating the mask contained within the input image as appropriate. The API shall be the following:

bool pmFlatField(pmReadout *in, const pmReadout *flat);

Note that the input image, in, and the flat-field image, flat, need not be the same size, since the input image may already
have been trimmed (following overscan subtraction), but the function shall use the offsets of the readout (in->col0,
in->row0) and the image subarray (in->image->x0, in->image->y0) to determine the appropriate offsets to
obtain the correct detector pixels in the flat-field image. Note that the image offset is relative to its parent, so this offset must
be followed to the top level image which is not a child of another image and the offsets summed. The detector pixel coor-
dinates of pixel x,y in a top-level image are thus x + in->image->x0 + in->col0, y + in->image->y0
+ in->row0. In the event that the flat image is too small (i.e., pixels on the input image refer to pixels outside the
range of the flat image), the function shall generate an error.

Pixels which are negative or zero in the flat shall be masked in the input image with the value PM_MASK_FLAT (see
§6.4.1). Negative pixels in the flat may be set to zero so that they are treated identically to zeroes. Any pixels masked
in the flat shall be masked with corresponding values in the output.

The function shall not normalize the flat; this responsibility is left to the caller. This function is basically equivalent to a
divide (with psImageOp), but with care for the region that is divided, checking for zero and negative pixels, and copying
of the mask from the flat to the output.

The images in the input and flat-field readouts must both be of type F32.

This operation acts only on the region of the readout specified by CELL.TRIMSEC.

6.4 Masking

6.4.1 Mask values

We define several mask values for use in the detrend processing:

/** Mask values */
typedef enum {

PM_MASK_TRAP = 0x0001, ///< The pixel is a charge trap
PM_MASK_BADCOL = 0x0002, ///< The pixel is a bad column
PM_MASK_SAT = 0x0004, ///< The pixel is saturated
PM_MASK_FLAT = 0x0008 ///< The pixel is non-positive in the flat-field

} pmMaskValue;

Of these, masks for the charge traps need to be grown by the extent of the OT convolution kernel. For other pixel types,
orthogonal transfer of the flux in this pixel will not (necessarily) affect the flux in neighbouring pixels.

6.4.2 Bad pixels

Given an input image, in, a bad pixel mask, a corresponding value in the bad pixel mask to mask in the input image,
maskVal, a saturation level, and a growing radius, pmMaskBadPixels shall mask in the input image those pixels in
the bad pixel mask that match the value to mask. The API shall be the following:
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pmReadout *pmMaskBadPixels(pmReadout *in, const pmReadout *mask, unsigned int maskVal,
float sat, unsigned int growVal, int grow);

Note that the input image, in, is modified in-place. All pixels in the mask which satisfy the maskVal shall have their
corresponding pixels masked in the input image, in. All pixels which satisfy the growVal shall have their corresponding
pixels, along with all pixels within the grow radius masked. Pixels which have flux greater than sat shall also be masked,
and grown by a single pixel (in addition to the grow done on the growVal).

In the future, may change grow to a convolution kernel (TBD) .

Note that the input image, in, and the mask need not be the same size, since the input image may already have been
trimmed (following overscan subtraction), but the function shall use the offsets in the image (in->x0 and in->y0) to
determine the appropriate offsets to obtain the correct pixel on the mask. In the event that the mask image is too small
(i.e., pixels on the input image correspond to pixels outside the range of the mask image), the function shall generate an
error.

The input image may be of type U16, S32 or F32. The mask image must be of type U8.

This operation acts only on the region of the readout specified by CELL.TRIMSEC.

6.5 Subtract sky

This may be deferred. (TBD)

Given an input image, a polynomial or spline specifying the order of a desired fit, a binning factor and statistics to use
for the binning, along with a clipping level, pmSubtractSky shall fit and subtract a model for the background of the
image. The API shall be the following:

pmReadout *pmSubtractSky(pmReadout *in, psPolynomial2D *poly, psImage *mask, psU8 maskVal,
int binFactor, psStats *stats, float clipSD);

Note that the input image, in, shall be subtracted in-place. The function shall return the subtracted image, and also update
the polynomial, Chebyshev or spline specified by fitSpec, to hold the coefficients used in the subtraction.

The polynomial, poly, specifies the order of the polynomial, and on return shall contain the coefficients of the fit. If
poly is NULL, then no fit shall be performed, and the function shall generate a warning and return.

When fitting the polynomial, the function shall first bin the input image by binFactor in order to reduce the re-
quired processing time. In the binning, pixels in the mask (if non-NULL) which satisfy the maskVal shall be ex-
cluded. The statistic to use in this binning is specified by stat. stat is of type psStats instead of simply
psStatsOptions so that clipping levels may be specified, if desired. In the event that multiple options are spec-
ified by stats, a warning shall be generated, and the option with the highest priority shall be used, according to
the following priority order: PS_STAT_SAMPLE_MEAN,PS_STAT_SAMPLE_MEDIAN,PS_STAT_CLIPPED_MEAN,
PS_STAT_ROBUST_MEAN, PS_STAT_ROBUST_MEDIAN, PS_STAT_ROBUST_MODE. If the binFactor is non-
positive, or stats is NULL or fails to specify an option, a warning shall be generated, and the fit shall be performed on
the entire image.

Binned pixels deviating more than clipSD standard deviations from the mean of the binned pixels shall be clipped in a
single clipping iteration before polynomial fitting. These pixels may be interpolated over, or may be simply ignored in the
fitting, according to the choice of algorithm. If the clipSD is non-positive, then the function shall generate a warning
and not perform any clipping.
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The mask shall be of type U8, and the input image, in, must be of type F32.

This operation acts only on the region of the readout specified by CELL.TRIMSEC.

6.6 Paper Trail

The elements of the focal plane hierarchy each contain an analysis member, intended to log the results of the detrend
tasks. The detrend tasks shall add to the analysis members as follows:

• pmMaskBadPixels:

– MASK.DONE (STR): The time at which masking was completed.

– MASK.SAT (S32): The number of saturated pixels masked in the image

– MASK.SAT.GROW (S32): The number of additional pixels masked by growing the saturated pixels.

– MASK.BAD (S32): The number of pixels masked in the image

– MASK.BAD.GROW (S32): The number of additional pixels masked by growing the specified bad pixels.

• pmNonLinearityPolynomial and pmNonLinearityLookup:

– NONLIN.DONE (STR): The time at which the non-linearity correction was completed.

– NONLIN.POLY (STR): The polynomial coefficients used (if applicable).

– NONLIN.LOOKUP (STR): The filename for the lookup table (if applicable).

• pmSubtractBias:

– BIAS.DONE (STR): The time at which the bias-subtraction was completed.

– BIAS.OVERSCAN.AXIS (STR): Overscan axis used.

– BIAS.OVERSCAN.FIT.TYPE (STR): Fit type applied to overscan.

– BIAS.OVERSCAN.FIT.COEFF (STR): Coefficients of overscan fit.

– BIAS.OVERSCAN.REGION (STR): Overscan regions (from x0,y0,numCols,numRows).

– BIAS.OVERSCAN.BIN (S32): Number of pixels per bin used in overscan.

– BIAS.OVERSCAN.MEAN (F32): The mean of the binned overscan pixels after subtracting the fit.

– BIAS.OVERSCAN.SD (F32): The standard deviation of the binned overscan pixels after subtracting the fit.

• pmFlatField:

– FLAT.DONE (STR): The time at which the flat-fielding was completed.

– FLAT.BAD (S32): Number of non-positive flat-field pixels.

To be added by higher-levels:

• BIAS.NAME (STR): Name of bias image

• DARK.NAME (STR): Name of dark image

• FLAT.NAME (STR): Name of flat image

• MASK.NAME (STR): Name of mask image
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6.7 Detrend Lookups

When it comes time to perform a detrend operation on an image, it is necessary to determine which detrend image should
be used. The Pan-STARRS Image Processing Pipeline uses the concept of a detrend image database table, or set of tables
(part of the Metadata Database), to store the known master detrend images. These tables can be accessed though the basic
query functions specified for the master detrend database. To simplify the interaction for the case of the detrend images,
the following function allows the user to explicitly search the detrend database table or tables for detrend images which
satisfy a set of characteristics.

psArray *pmDetrendLookup (psMetadata *constraints, psMetadata *tableDefs);

This function accepts a metadata structure which restricts the selected detrend images. This metadata structure may contain
any of the following entries:

TYPE type of detrend data (eg, flat, bias)
CAMERA name of desired camera (eg, GPC, MEGACAM)
CHIP chip identifier (eg., ccd00)
FILTERNAME name of specific filter hardware (eg, r.GPC01)
FILTERTYPE conceptual name of filter (eg., r)
TIME_MIN lower bound on valid time range
TIME_MAX upper bound on valid time range
LABEL match the entry label
RECIPE recipe used to build detrend image
EXPTIME exposure time
AIRMASS airmass

Any detrend images which match the provided constraints are returned as an array of psMetadata elements correspond-
ing to the columns of the detrend database table. The additional input parameter specifies additional information to define
the detrend database tables. This may include the access information (IP, Username, Password), as well as names for the
table and the columns which correspond to the constraint names.

7 Detrend Creation

In the detrend creation process, a collection of raw images are combined to produce a clean, high-quality master image
for correcting the effect of interest. The input images may potentially be processed and scaled in some way. The resulting
output images may be to be re-scaled to have a consistent signal for all chips in the mosaic. The simplest example is the
construction of a bias image, in the case where there is signficant 2-D bias structure. In this case, the input raw bias images
are probably combined without any additional processing. In another example, flat-field image must be bias-corrected and
scaled to a consistent normalization before being combined, and the flat-field images from the different chips must be
normalized so that each chip will be flattened consistently across the mosaic. A complex example is the fringe pattern,
in which the input images must be bias-corrected and flattened, and the resulting images must be scaled by the amplitude
of the fringe pattern on each image, rather than by the average flux level. In this section, we define the tools necessary to
perform the detrend creation process.

7.1 Image Stacking

A basic operation in generating the master detrend images is using a stack of many input images of a particular type and
combining them, with perhaps some additional scaling, in order to build up signal-to-noise and to reject deviant pixel. For
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this, we require a general purpose image combination module. We forsee this module as only acting upon data from the
same detector, and so each input image will have the same noise characteristics.

typedef struct {
psStats *stats; // Statistics to use in combining pixels
unsigned int maskVal, // Mask pixels where mask & maskVal == 1
float fracHigh; // Fraction of high pixels to throw
float fracLow; // Fraction of low pixels to throw
int nKeep; // Number of pixels to be sure to keep

} pmCombineParams;

psImage *
pmReadoutCombine(psImage *output, // Output image, or NULL

const psList *inputs, // List of input readouts
pmCombineParams *params, // Combination parameters
const psVector *zero, // Offsets to apply for each image
const psVector *scale, // Scales to apply for each image
bool applyZeroScale, // Are zero and scale for application, or only noise properties?
float gain, // Gain in e/ADU
float readnoise // Read noise in e
);

pmReadoutCombine combines input images pixel by pixel — for each pixel of the output image, a stack of contributing
input pixels is formed and combined. Several of its input parameters are lists or vectors, and if these are not all of the same
length (or NULL), the module shall generate an error and return NULL.

If the provided output is NULL, then the module shall allocate a new image of sufficient size for the input images. If the
output image is non-NULL and is not of sufficient size for the combined image, the module shall generate an error and
return NULL.

If the inputs is NULL, the module shall generate an error and return NULL. Otherwise, the inputs shall be a list of
pmReadouts. The images contained within the pmReadouts need not all be of the same size, but the module shall
take into account the offsets (col0,row0) from the corner of the detector when comparing pixels, so that it is the same
physical pixels that are combined.

The parameters used in the combination, including how the pixels are to be combined, and how the rejection is performed
is contained within the params, which may not be NULL (otherwise the module shall generate an error and return NULL).
We choose to use this structure instead of supplying the values separately in order to keep down the number of parameters
to pmReadoutCombine; the pmCombineParams may be recycled for subsequent calls to pmReadoutCombine
since the values are not dependent upon the choice of inputs, but merely specify how the combination is to be performed.

The particular statistic specified by stats shall be used to combine each stack of pixels from the input images. Only one
of the statistics choices may be specified, otherwise the module shall generate an error and return NULL.

If the maskVal is non-zero, then pixels in the mask of each pmReadout in the inputs which satisfy the maskVal
shall not have the corresponding pixels placed in the stack for combination.

After masking, but before performing the combination, the highest fracHigh fraction and lowest fracLow fraction of
pixels in the stack are immediately rejected, unless this would leave less than nKeep pixels in the stack, in which case no
immediate rejection is performed.

If the zero vector is non-NULL and applyZeroScale is true, then the appropriate values shall be added to the
inputs before rejection is performed. If zero is non-NULL and applyZeroScale is false, then the values shall only
be used in calculating the Poisson variances.
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If the scale vector is non-NULL and applyZeroScale is true, then the appropriate values shall multiply the
inputs before rejection is performed. If scale is non-NULL and applyZeroScale is false, then the values shall
only be used in calculating the Poisson variances.

The purpose of applyZeroScale is to allow combination of fringe frames, where the frames have been deliberately
sky-subtracted and rescaled (to get the fringes amplitudes running from -1 to 1), which actions should not be undone when
combining, but yet it is desirable to provide the zero and scale values so that the correct noise properties are used in
the combination.

If the gain and readnoise are positive and non-negative (respectively), then these shall be used to provide weights for
the combination using Poisson statistics (σi below).

In summary, pixels corresponding to the same physical pixel are combined, having values xi ± σi. In the case that
applyZeroScale is true, then:

xi = sifi + zi (1)

σi = [gxi + r2]1/2/g (2)

Where fi is the value of the pixel in image i, si is the scale applied to image i, zi is the zero offset applied to image i, g is
the gain, and r is the read noise. If scales are not provided, they are set to unity; if zero offsets are not provided, they are
set to zero.

If applyZeroScale is false, then the values are:

xi = fi (3)

σi = [g(sifi + zi) + r2]1/2/g (4)

where the same symbols are used as above.

The inputs, zero and scale may be of U16, S32 and F32 types, and must all be of the same type. The output
shall be of the same type.

7.2 Fringe Amplitude

Some images contain a signal caused by thin-film interference in the device due to strong emission lines. The resulting
instrumental effect consists of a pattern (the “fringe pattern”) of bright and dark bands corresponding to the constructive
and destructive interference of the emission lines. In the case that a single emission line causes the line structure, the
resulting pattern can be described by two independent parameters: First, the amplitude of the emission line determines
the overall amplitude of the pattern. Second, the three-dimensional surface structure of the device determines the shape
of the pattern. In a typical situation, the device is illuminated by multiple emission lines, as well as a continuum spectral
source, which contributes to the overall light detected by the device without following the fringe pattern. The relative
intensities of the continuum background and the fringe pattern depend on the device structure (thickness) and on the ratio
of the continuum and line emission fluxes.

A simple approach to the fringe pattern is to subtract a master fringe frame scaled by the amplitude of the fringe pattern.
The amplitude of the fringe pattern is used both in the process of constructing the master image and in scaling the master
image when it is applied to science image. We thus need a method of measuring the fringe amplitude which is robust in
the presence of stars and which is fast. We implement a method used at CFHT in which the fringe pattern is mapped by
a series of points pairs which correspond to peaks and valleys of the fringe pattern. We define the following function to
measure the global fringe amplitude of an image given a collection of fringe point pairs.
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stats *pmFringeStats (psArray *fringePoints, psImage *image, psMetadata *config);

This function measures the robust median at each of the minimum and maximum coordinates and determines the differ-
ence and mean of the two values. The size of the box used to make the measurement at each point is specified by the
configuration variable FRINGE_SQUARE_RADIUS. From the collection of differences, the robust median is calculated,
and returned as part of the fringe statistics. For each fringe point, the values of delta and midValue are also assigned
and available to the user on return.

The fringePoints are defined by the following structure:

typedef struct {
double xMin;
double yMin;
double xMax;
double yMax;
double delta;
double midValue;

} pmFringePoint;

7.3 Flat-field Re-Normalization

Consider a collection of Ni flat-field images obtained with a mosaic camera consisting of Nj chips. Each image is exposed
to an illumination source which should be a uniform surface brightness1 Two factors determine the actual measured flux
level (in Digital Numbers) on each of the chips in each image: the gain of each chip (gainj) and the flux level from the
illumination source (sourcei). When the images are combined, the input images must be scaled so that the flux levels
can be consistently compared. After combining the collection of images, it is necessary to determine an appropriate
re-normalization for the resulting flat-field images. In effect, the individual chips must be adjusted so that the master
flat-field image has a flux level which varies from chip to chip in proportion to the actual chip gain. In this case, if a
uniform illumination source illuminates the mosaic, the resulting flux levels will be corrected by the flat-field to a single,
consistent flux level.

In order to determine the correct relative scaling between the devices, it is thus necessary to know the individual chip
gains, or at least the gain ratios. A typical technique scaled all chips relative to a reference chip, or by a statistic measured
for the complete collection. These techniques fail if the input collection of images does not always consist of the same set
of chips; for the GPC on Pan-STARRS, we must expect that individual cells or even chips may be disabled on a frequent
basis, so our algorithms must not be limited by the assumption that all chips are available in all images. We therefore
define the following algorithm to measure the relative chip gains for a collection of input flat-field images, each with a
measured flux fluxi,j . We want to solve for the chip gains and the source illumination fluxes which would make the best
prediction of the measured input image fluxes:

fluxpred
i,j = gainj × sourcei

This relationship is easiest to determine if we take the logarithm of both sides of the equation:

Mpred
i,j = Gj + Si

1This is likely a false assumption: the illumination source likely has spatial variations. However, for the purposes of this discussion, it only
matters that such spatial variations scale consistently as a function of illumination intensity. The spatial errors are corrected by the photometric
flat-field correction technique (eg., Magnier & Cuillandre 2004).
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where Mpred
i,j = log(fluxpred

i,j ), Gj = log(gainj), and Si = log(sourcei). We can then write the chi-square which we want
to minimize as:

χ2 =
∑

i,j

(Mobs
i,j −Gj − Si)

2

where we ignore the weights of the different measured flux levels. Taking the derivatives with respect to the parameters of
interest (Gj , Si), and setting them to 0, we determine the following set of equations which must be solved:

Gj ×Ni =
∑

i

Mobs
i,j −

∑

i

Si

Sj ×Nj =
∑

j

Mobs
i,j −

∑

j

Gj

This set of equations can be solved iteratively, starting from the assumption that all chip gains are 1.0, (Gj = 0), or
by supplying a guess for the chip gains. The result of this analysis is the measured chip gains and the measured source
illumination levels for each of the input flat-field images. The chip gains can then be used to modify the flux levels on the
master flat-field images.

We define the following function to perform the analysis discussed above:

bool pmFlatNormalization (psVector *sourceFlux, psVector *chipGains, psArray *fluxLevels);

The input array fluxLevels consists of Ni vectors, one per mosaic image. Each vector consists of Nj elements, each
a measurement of the input flat-field image flux levels. All of these vectors must be constructed with the same number
of elements, or the function will return an error. If a chip is missing from a particular image, that element should be set
to NaN. The vector chipGains supplies initial guesses for the chip gains. If the vector contains the values 0.0 or NaN
for any of the elements, the gain is set to the mean of the valid values. If the vector length does not match the number of
chips, an warning is raised, all chip gain guesses will be set to 1.0, and the vector length modified to match the number
of chips defined by the supplied fluxLevels. The sourceFlux input vector must be allocated (not NULL), but the
routine will set the vector length to the number of source images regardless of the initial state of the vector. All vectors
used by this function must be of type PS_DATA_F64.

8 Objects on Images

8.1 Overview

The process of finding, measuring, and classifying astronomical sources on images is one of the critical tasks of the IPP or
any astronomical software system. In this section, we define structures and functions related to the task of source detection
and measurement. The elements defined in this section are generally low-level components which can be connected
together to construct a complete object measurement suite.

We first define the collection of structures needed to carry information about the detected sources. A major challenge is
to define what we mean by an astronomical object in the context of image source detection. An astronomical object may
be as simple as a stellar point source, or it may consist of a galaxy which has smooth extended structure; it may consist of
an irregular galaxy or galaxy group with substantial and complex sub-structure, or it may consist of complex non-stellar
structures such as planetary nebulae, reflection nebulae, outflows and jets.
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The simplest objects (ie, stars) can be sufficiently modeled by the point-source function (PSF). More complex objects
(such as simple, smooth galaxies), may have approximate analytical models which represent their morphology with more-
or-less accuracy. In the extreme cases, the objects are not well modeled at all and must be represented in other ways.
Thus, one aspect of our data structures must be elements to specify if an object has been represented by a model, what
the model parameters are, and how well it is represented by the model. Another aspect of the data structures must be
a representation of the pixels associated with the object so complex structures may be referenced without attempting to
supply an analytical model. Finally, it is often useful to allow a single complex model to be represented as a collection of
simpler contained structures which may be modeled. Thus, the representation of an object must be capable of identifying
children, or substructures, of that object.

Two additional aspects must be considered. First, source detection need not be performed on a single image in isolation:
it is necessary for multiple realizations of the same source in multiple images to be measured together (whether or not
through simultaneous fitting in multiple bands or via application of the results from one image to another image). Second,
it will be necessary to performed object measurements on pixels in which no source is actually detected. For example, this
is a convenient way to provide flux upper limits at the locations of known objects.

In the discussion that follows, images are of type F32 and masks are of type U8.

8.2 Structures to Describe Sources

In the object analysis process, we will use specific mask values to mark the image pixels. The following structure defines
the relevant mask values.

typedef enum {
PSPHOT_MASK_CLEAR = 0x00,
PSPHOT_MASK_INVALID = 0x01,
PSPHOT_MASK_SATURATED = 0x02,
PSPHOT_MASK_MARKED = 0x08,

} psphotMaskValues;

8.2.1 pmSource and pmPeak

We define the following structure to represent a single source detected in a single image.

typedef struct {
pmPeak *peak; // description of peak pixel
psImage *pixels; // rectangular region including object pixels
psImage *weight; // Image variance.
psImage *mask; // Mask which marks pixels associated with objects.
pmMoments *moments; // basic moments measure for the object
pmModel *modelPSF; // PSF model parameters and type
pmModel *modelEXT; // FLT model parameters and type
pmSourceType type; // Best identification of object
pmSourceMode mode; // flags describing the model quality
psArray *blends; // array of other sources blended with this source
float apMag; // measured aperture magnitude for source
float fitMag; // measured model magnitude for source
psRegion region; // area on image covered by selected pixels

} pmSource;

A source has the capacity for several types of measurements. The simplest measurement of a source is the location and
flux of the peak pixel associated with the source:
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typedef struct {
int x; // x-coordinate of peak pixel
int y; // y-coordinate of peak pixel
float counts; // value of peak pixel (above sky?)
pmPeakType class; // description of peak

} pmPeak;

A peak pixel may have several features which may be determined when the peak is found or measured. These are specified
by the pmPeakType enum. PM_PEAK_LONE represents a single pixel which is higher than its 8 immediate neighbors.
The PM_PEAK_EDGE represents a peak pixel which touching the image edge. The PM_PEAK_FLAT represents a peak
pixel which has more than a specific number of neighbors at the same value, within some tolerance:

typedef enum {
PM_PEAK_LONE, // isolated peak
PM_PEAK_EDGE, // peak on edge
PM_PEAK_FLAT // peak has equal-value neighbors
PM_PEAK_UNDEF // Undefined.

} pmPeakType;

8.2.2 pmMoments and source description

The pixels which contain the source are specified with the psImage *pixels element, a subimage of the image being
analysed. Similarly, the mask element is a subimage of the corresponding mask image and the weight element is a
subimage of the corresponding weight image (image varience). Since these are subimages, a collection of many objects
may include overlapping pixels; care must be taken that pixel manipulations for one source do not unintentionally interfere
with the other source pixels. The mask may be used to exclude any pixels which are not considered part of the source.
Along with these pixel structures, we include the psRegion region element which defines the boundaries of the
current associated subimages.

One of the simplest measurements which can be made quickly for an object are the object moments. We specify a structure
to carry the moment information for a specific source:

typedef struct {
float x; // x-coord of centroid
float y; // y-coord of centroid
float Sx; // x-second moment
float Sy; // y-second moment
float Sxy; // xy cross moment
float Sum; // pixel sum above sky (background)
float Peak; // peak counts above sky
float Sky; // sky level (background)
float SN; // approx signal-to-noise
int nPixels; // number of pixels used

} pmMoments;

A collection of object moment measurements can be used to determine approximate object classes. The key to this analysis
is the location and statistics (in the second-moment plane, σx vs σy) of the group of objects which are likely PSF objects.
We define the following structure to identify the location and size of the psf clump in the second-moment plane.

typedef struct {
float X;
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float dX;
float Y;
float dY;

} pmPSFClump;

A given source may be identified as most-likely to be one of several source types. The pmSource entry pmSourceType
defines the current best-guess for this source.

typedef enum {
PM_SOURCE_UNKNOWN, ///< no guess yet made
PM_SOURCE_DEFECT, ///< a cosmic-ray
PM_SOURCE_SATURATED, ///< random saturated pixels
PM_SOURCE_STAR, ///< a good-quality star
PM_SOURCE_EXTENDED, ///< an extended object (eg, galaxy)

} pmSourceType;

The related element, pmSourceMode mode, holds a collection of flags which are used to indicate the status of the
analysis for a source. These are defined below:

typedef enum {
PM_SOURCE_DEFAULT = 0x0000, ///< no flags are set
PM_SOURCE_PSFMODEL = 0x0001, ///< flags refer to the PSF model
PM_SOURCE_EXTMODEL = 0x0002, ///< flags refer to the EXT model
PM_SOURCE_SUBTRACTED = 0x0004, ///< the model has been subtracted from the image
PM_SOURCE_FITTED = 0x0008, ///< the source has been fitted with a model
PM_SOURCE_FAIL = 0x0010, ///< the model fit failed
PM_SOURCE_POOR = 0x0020, ///< the model fit was poor (low S/N, etc)
PM_SOURCE_PAIR = 0x0040, ///< the model fit is one of a paired source
PM_SOURCE_PSFSTAR = 0x0080, ///< the source was used to construct the image PSF model
PM_SOURCE_SATSTAR = 0x0100, ///< the source is saturated
PM_SOURCE_BLEND = 0x0200, ///< the source is a blend with another source
PM_SOURCE_LINEAR = 0x0400, ///< the source was fitted with the linear PSF model
PM_SOURCE_TEMPSUB = 0x0800, ///< the source has been subtracted, but should be replaced

} pmSourceMode;

8.2.3 pmModel Source Model and Abstraction

An object’s flux distribution may be modeled with some analytical function. The description of the model includes the
model parameters and their errors, along with the fit χ2. The model type is identified by code type, dynamically assigned
based on the available models (see below). We discuss the details of these models in section A. The model parameters
have 4 special elements. The first four elements represent aspects of the source which are not specified by the image PSF,
even for point sources. These consist of, in order:

• the local sky

• the object normalization

• the x-coordinate

• the y-coordinate
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should be include utility pointers to these parameters so that functions do not need to know the parameter se-
quence? (TBD)

The structure which carries the information about a given source model is defined below:

typedef struct {
pmModelType type; // model to be used
psVector *params; // parameter values
psVector *dparams; // parameter errors
psF32 chisq; // fit chisq
psS32 nDOF; // number of degrees of freedom
psS32 nIter; // number of iterations
pmModelStatus status; // fit status
float radius; // fit radius actually used

} pmModel;

The status element carries the resulting success/failure status of an attempt to fit the model to the source:

typedef enum {
PM_MODEL_UNTRIED, ///< model fit not yet attempted
PM_MODEL_SUCCESS, ///< model fit succeeded
PM_MODEL_NONCONVERGE, ///< model fit did not converge
PM_MODEL_OFFIMAGE, ///< model fit drove out of range
PM_MODEL_BADARGS ///< model fit called with invalid args

} pmModelStatus;

We distinguish several ways in which an analytical model may be applied to a source. The PSF model represents the best
fit of the image PSF to the specific object. In this case, the PSF-dependent parameters are specified for the object by the
PSF, not by the fit. The EXT model represents the best fit of the given model to the object, with all parameters floating
in the fit. Such a model would typically be used to represent and extended object, hence the abbreviation EXT. In some
circumstances, a source may be fitted with a PSF model in which the position is held fixed, and not allowed to vary in the
model fitting process. We identify such a model as FIX. Finally, we allow for the case in which two nearly-merged PSFs
are fitted with a single 2-PSF model. We identify such a model as DBL. The pmSource structure contains a pointer to
both a PSF and an EXT model, allowing any source to carry information about both possible fitting modes not clear that
we actually use this information; we might be better off simply distinguishing with one of the pmSourceMode flags
(TBD) . The value of the model at a specific coordinate can be determined by calling the function:

psF32 pmModelEval(pmModel *model, psImage *image, psS32 col, psS32 row);

For this function, the values of col,row are in the image coordinates, which may be a subimage, while the reference
coordinate for the model is in the parent image coordinates.

In the pmSource structure, the elements apMag and fitMag are used to carry the measured magnitude of the source
determined either from aperture photometry or from the integral of the fitted model function. The element blends is
used to carry pointers to the collection of sources which were found to be blended with this source. Only the primary
source of a blend group carries this information (see Section ??).

Every model instance belongs to a class of models, defined by the value of the pmModelType type entry. Various
functions need access to information about each of the models. Some of this information varies from model to model,
and may depend on the current parameter values or other data quantities. In order to keep the code from requiring the
information about each model to be coded into the low-level fitting routines, we define a collection of functions which
allow us to abstract this type of model-dependent information. These generic functions take the model type and return
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the corresponding function pointer for the specified model. Each model is defined by creating this collection of specific
functions, and placing them in a single file for each model. We define the following structure to carry the collection of
information about the models.

typedef struct {
char *name;
int nParams;
pmModelFunc modelFunc;
pmModelFlux modelFlux;
pmModelRadius modelRadius;
pmModelLimits modelLimits;
pmModelGuessFunc modelGuessFunc;
pmModelFromPSFFunc modelFromPSFFunc;
pmModelFitStatusFunc modelFitStatusFunc;

} pmModelGroup;

Each entry in the pmModelGroup defines the information needed by the system to specify a model. The function types
define above are

typedef psMinimizeLMChi2Func pmModelFunc;
typedef psF64 (*pmModelFlux)(const psVector *params);
typedef psF64 (*pmModelRadius)(const psVector *params, double flux);
typedef bool (*pmModelLimits)(psVector **beta_lim, psVector **params_min, psVector **params_max);
typedef bool (*pmModelGuessFunc)(pmModel *model, pmSource *source);
typedef bool (*pmModelFromPSFFunc)(pmModel *modelPSF, pmModel *modelFLT, pmPSF *psf);
typedef bool (*pmModelFitStatusFunc)(pmModel *model);

Each of these functions is found for a given model by calling the corresponding lookup function:

pmModelFunc pmModelFunc_GetFunction (pmModelType type);
pmModelFlux pmModelFlux_GetFunction (pmModelType type);
pmModelRadius pmModelRadius_GetFunction (pmModelType type);
pmModelLimits pmModelLimits_GetFunction (pmModelType type);
pmModelGuessFunc pmModelGuessFunc_GetFunction (pmModelType type);
pmModelFromPSFFunc pmModelFromPSFFunc_GetFunction (pmModelType type);
pmModelFitStatusFunc pmModelFitStatusFunc_GetFunction (pmModelType type);

pmModelFunc is the function used to determine the value of the model at a specific coordinate, and is the one used by
psMinimizeLMChi2.

pmModelFlux returns the total integrated flux for the given input parameters.

pmModelRadius returns the scaling radius at which the flux of the model matches the specified flux. This presumes
that the model is a function of an elliptical contour.

pmModelLimits sets the parameter limit vectors for the function.

pmModelGuessFunc generates an initial guess for the model based on the provided source statistics (moments and
pixel values as needed).

pmModelFromPSFFunc takes as input a representation of the psf and a value for the model and fills in the PSF param-
eters of the model. The input primarily relies upon the centroid coordinates of the input model, thought the normalization
may potentially be used.
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pmModelFitStatusFunc returns a true or false values based on the success or failure of a model fit. the success is
determined by quantities such as the chisq or the signal-to-noise.

In addition, the following functions are useful for interacting with the collection of models:

int pmModelParameterCount (pmModelType type);

This function returns the number of parameters used by the listed function.

char *pmModelGetType (pmModelType type);
pmModelType pmModelSetType (char *name);

These two functions provide translations between the user-space model names and the internal model type codes. The
model type codes are not necessarily maintained between compilations of the program; the name should be used to
transfer models between programs or systems.

8.2.4 pmGrowthCurve

When the photometry of source is measured in a fixed aperture, there is always a fraction of the source light which falls
outside of the aperture. The resulting aperture magnitude is thus larger (ie, fainter) than the actual source. As the aperture
is increased, the amount of loss decreases and the measured magnitude increases. This trend is the curve of growth for the
source. We use the following structure to carry information about the curve of growth. We use the PSF model to measure
the curve of growth for an image.

typedef struct {
psVector *radius;
psVector *apMag;
psF32 refRadius;
psF32 maxRadius;
psF32 fitMag;
psF32 apRef; // apMag[refRadius]
psF32 apLoss; // fitMag - apRef

} pmGrowthCurve;

In this structure, radius is a monotonically increasing sequence of radius values (in pixels). The apMag vector contains
the measured magnitude at any of these radius: this is the curve-of-growth trend. The remaining entries summaries the
relationship: refRadius is the global reference radius used for this image; maxRadius is the outermost radius at
which the curve of growth was measured; fitMag is the fitted PSF model magnitude integrated to infinity; apRef is
the aperture magnitude at the reference radius; apLoss is the difference between the aperture magnitude at the reference
radius and the fitted model magnitude. A few related functions are specified to interact with the curve of growth:

pmGrowthCurve *pmGrowthCurveAlloc (psF32 minRadius, psF32 maxRadius, psF32 dRadius);

This function allocates a pmGrowthCurve structure and fills in the radius vector (see psLib SDRS
psVectorCreate). It does not allocate the apMag vector.

psF32 pmGrowthCurveCorrect (pmGrowthCurve *growth, psF32 radius);
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This function accepts a growth curve structure and returns the correction between the specified radius and the reference
radius (apMag(refRadius)− apMag(radius)).

The following two functions are used to search the growth curve to the corresponding radius entry:

int psVectorBracket (psVector *index, psF32 key, bool above);
psF32 psVectorInterpolate (psVector *index, psVector *value, psF32 key);

8.2.5 Aperture Trends

With PSF model fitting, there is always some discrepancy between the model of the PSF and the actual PSF. As a result,
the measured flux from the model will not represent exactly the flux of the source. It is necessary to measure the correction
between the model and the actual source flux. One way to perform this measurement is to compare the model flux with the
flux measured for bright stars within a fixed aperture. The quantity to be measured is dA = maperture −mfit. In practice,
dA exhibits variations as a function of the source position (x, y) and the source flux. The variations as a function of source
position can be understood as a change in the PSF model error as a function of position due to the changing shape of
the PSF (despite the varying PSF model, it is possible that the fitted model yields positional variations in the residual
flux). The variations in dA as a function of magnitude can be understood as the result of a bias in the local background
measurement (for the fainter sources) and as a result of non-linearity in the detector setting on the bright end. We use a
4D polynomial to represent these trends. The first two dimensions of the polynomial represent the variation of dA as a
function of x, y; we provide helper functions to define 1st and 2nd order polynomials in x, y. The next two dimensions are
fitted independently (no cross terms). The first represents the variation as a function of r2/flux, where r is the aperture
radius used to measure dA; this is the scaling of a magnitude error in the presence of a constant error in the sky level. The
last dimension represents the variation of dA as a function of the stellar flux.

The following forms of the aperture correction model may be selected by the user:

typedef enum {
PM_PSF_NONE,
PM_PSF_CONSTANT,
PM_PSF_SKYBIAS,
PM_PSF_SKYSAT,
PM_PSF_XY_LIN,
PM_PSF_XY_QUAD,
PM_PSF_SKY_XY_LIN,
PM_PSF_SKYSAT_XY_LIN,
PM_PSF_ALL

} pmPSF_ApTrendOptions;

The following utility function sets the aperture correction model coefficient masks to select the specific desired coeffi-
cients:

bool pmPSF_MaskApTrend (pmPSF *psf, pmPSF_ApTrendOptions option);

8.2.6 pmPSF, pmPSFtry, and PSF model

It is useful to generate a model to define the point-spread-function which describes the flux distribution for unresolved
sources in an image. In general, the PSF varies with position in the image. We allow any of the source models defined
for the pmModel to represent the PSF. For a given source model, the 2D spatial variation of all of the source parameters,
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except the first four PSF-independent parameters, are represented as polynomial, stored in a psArray. The structure also
contains the aperture correction model (ApTrend) and the curve-of-growth model (growth). The additional elements
are: ApResid, the constant term in the aperture correction model; dApResid, the residual scatter for bright sources
(S/N > 100) after applying the aperture correction; skyBias, the measured average bias in the sky measurement;
skySat, the scaling of the flux-dependent portion of the correction.

The other elements of the structure define the quality of the PSF determination.

typedef struct {
pmModelType type; ///< PSF Model in use
psArray *params; ///< Model parameters (psPolynomial2D)
psPolynomial4D *ApTrend; ///< ApResid vs (x,y,rflux) (rflux = ten(0.4*mInst)
pmGrowthCurve *growth; ///< apMag vs Radius
float ApResid; ///< ???
float dApResid; ///< ???
float skyBias; ///< ???
float skySat; ///< ???
float chisq; ///< PSF goodness statistic
int nPSFstars; ///< number of stars used to measure PSF
int nApResid; ///< number of stars used to measure ApResid

} pmPSF;

pmModel *pmModelFromPSF (pmModel *model, pmPSF *psf);

This function constructs a pmModel instance based on the pmPSF description of the PSF. The input is a pmModel
with at least the values of the centroid coordinates (possibly normalization if this is needed) defined. The values of the
PSF-dependent parameters are specified for the specific realization based on the coordinates of the object.

bool pmPSFFromModels (pmPSF *psf, psArray *models, psVector *mask);

This function takes a collection of pmModel fitted models from across a single image and builds a pmPSF representation
of the PSF. The input array of model fits may consist of entries to be ignored (noted by a non-zero mask entry). The
analysis of the models fits a 2D polynomial for each parameter to the collection of model parameters as a function of
position (and normalization?). In this process, some of the input models may be marked as outliers and excluded from the
fit. These elements will be marked with a specific mask value (1 == PSFTRY_MASK_OUTLIER).

We definet he following two functions to convert the PSF model parameters into a collection of elements on a metadata
structure, and vice versa. These can be used to read and write PSFs to a file and or a database.

psMetadata *pmPSFtoMD (psMetadata *metadata, pmPSF *psf);
pmPSF *pmPSFfromMD (psMetadata *metadata);

We have the capability to test several different model functions in an attempt to build an accurate PSF for an image. The
complete set of data needed to build and test as specific PSF model is carried by the pmPSFtry structure:

typedef struct {
pmModelType modelType;
pmPSF *psf;
psArray *sources; // pointers to the original sources
psArray *modelEXT; // model fits, floating parameters
psArray *modelPSF; // model fits, PSF parameters
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psVector *mask;
psVector *metric;
psVector *fitMag;

} pmPSFtry;

This structure contains a pointer to the collection of sources which will be used to test the PSF model form. It lists
the pmModelType type of model being tests, and contains an element to store the resulting psf representation. In
addition, this structure carries the complete collection of FLT (floating parameter) and PSF (fixed parameter) model fits to
each of the sources modelFLT and modelPSF. It also contains a mask which is set by the model fitting and psf fitting
steps. For each model, the value of the quality metric is stored in the vector metric and the fitted instrumental magnitude
is stored in fitMag. The quality metric for the PSF model is the aperture magnitude minus the fitted magnitude for each
source.

This collection of aperture residuals is examined in the analysis process, and a linear trend of the residual with the inverse
object flux (ie, 100.4∗mag ) is fitted. The result of this fit is a measured sky bias (systematic error in the sky measured by
the fits), an effective infinite-magnitude aperture correction (ApResid), and the scatter of the aperture correction for the
ensemble of PSF stars (dApResid). The ultimate metric to intercompare multiple types of PSF models is the value of
the aperture correction scatter.

The following functions are used to try out a single PSF model.

pmPSFtry *pmPSFtryModel (psArray *sources, char *modelName, float RADIUS);

This function takes the input collection of sources and performs a complete analysis to determine a PSF model of the given
type (specified by model name). The result is a pmPSFtry with the results of the analysis.

bool pmPSFtryMetric (pmPSFtry *try, float RADIUS);

This function is used to measure the PSF model metric for the set of results contained in the pmPSFtry structure.

The following datatype defines the masks used by the pmPSFtry analysis to identify sources which should or should not
be included in the analysis.

enum {
PSFTRY_MASK_CLEAR = 0x00,
PSFTRY_MASK_OUTLIER = 0x01, // 1: outlier in psf polynomial fit (provided by psPolynomials)
PSFTRY_MASK_EXT_FAIL = 0x02, // 2: ext model failed to converge
PSFTRY_MASK_PSF_FAIL = 0x04, // 3: psf model failed to converge
PSFTRY_MASK_BAD_PHOT = 0x08, // 4: invalid source photometry
PSFTRY_MASK_ALL = 0x0f,

} pmPSFtryMaskValues;

typedef enum {
PM_CONTOUR_CRUDE

} pmContourType;

Allocators for the above structures are defined as follows:

pmSource *pmSourceAlloc ();
pmPeak *pmPeakAlloc (int x, int y, float counts, psPeakType class);
pmMoments *pmMomentsAlloc ();
pmModel *pmModelAlloc (pmModelType type);
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8.3 Basic Object Detection APIs

In this section, we specify a collection of basic functions which operate on images and sources. We define them roughly
in order in which we expect to use them in a basic object detection process.

psVector *pmFindVectorPeaks(const psVector *vector, float threshold);

Find all local peaks in the given vector above the given threshold. A peak is defined as any element with a value greater
than its two neighbors and with a value above the threshold. Two types of special cases must be addressed. Equal value
elements: If an element has the same value as the following element, it is not considered a peak. If an element has the same
value as the preceding element (but not the following), then it is considered a peak. Note that this rule (arbitrarily) identifies
flat regions by their trailing edge. Edge cases: At start of the vector, the element must be higher than its neighbor. At the
end of the vector, the element must be higher or equal to its neighbor. These two rules again places the peak associated
with a flat region which touches the image edge at the image edge. The result of this function is a vector containing the
coordinates (element number) of the detected peaks (type psU32).

psArray *pmFindImagePeaks(const psImage *image, float threshold);

Find all local peaks in the given image above the given threshold. This function should find all row peaks using
pmFindVectorPeaks, then test each row peak and exclude peaks which are not local peaks. A peak is a local peak
if it has a higher value than all 8 neighbors. If the peak has the same value as its +y neighbor or +x neighbor, it is NOT
a local peak. If any other neighbors have an equal value, the peak is considered a valid peak. Note two points: first, the
+x neighbor condition is already enforced by pmFindVectorPeaks. Second, these rules have the effect of making
flat-topped regions have single peaks at the (+x,+y) corner. When selecting the peaks, their type must also be set. The
result of this function is an array of pmPeak entries.

psArray *pmPeaksSubset(psArray *peaks, float maxvalue, const psRegion valid);

Create a new peaks array, removing certain types of peaks from the input array of peaks based on the given criteria. Peaks
should be eliminated if they have a peak value above the given maximum value limit or if the fall outside the valid region.
The result of the function is a new array with a reduced number of peaks.

bool pmSourceDefinePixels(pmSource *mySource,
pmReadout *readout,
psF32 x,
psF32 y,
psF32 Radius)

bool pmSourceRedefinePixels(pmSource *mySource,
pmReadout *readout,
psF32 x,
psF32 y,
psF32 Radius)

The first form defines psImage subarrays (pixel, weight, and mask) for the source located at coordinates x,y on the
image set defined by readout. The pixels defined by this operation consist of a square window (of full width 2Radius+
1) centered on the pixel which contains the given coordinate, in the frame of the readout. The window is defined to have
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limits which are valid within the boundary of the readout image, thus if the radius would fall outside the image pixels,
the subimage is truncated to only consist of valid pixels. If readout->mask or readout->weight are not NULL,
matching subimages are defined for those images as well. This function fails if no valid pixels can be defined (x or y
less than Radius, for example). This function should be used to define a region of interest around a source, including
both source and sky pixels. The second form accepts an existing source and redefines the pixels if the requested radius
encompasses more pixels than the existing images.

pmSource *pmSourceLocalSky(pmSource *source,
psStatsOptions statsOptions,
float Radius)

Measure the local sky in the vicinity of the given source. The Radius defines the square aperture in which the moments
will be measured. This function assumes the source pixels have been defined, and that the value of Radius here is smaller
than the value of Radius used to define the pixels. The annular region not contained within the radius defined here is
used to measure the local background in the vicinity of the source. The local background measurement uses the specified
statistic passed in via the statsOptions entry. This function allocates the pmMoments structure. The resulting sky is
used to set the value of the pmMoments.sky element of the provided pmSource structure.

bool pmSourceMoments(pmSource *source, float radius);

Measure source moments for the given source, using the value of source.moments.sky provided as the local
background value and the peak coordinates as the initial source location. The resulting moment values are applied to the
source.moments entry, and the source is returned. The moments are measured within the given circular radius of the
source.peak coordinates. The return value indicates the success (TRUE) of the operation. This function also measures
the approximate signal-to-noise ratio of the source (source.SN) based on the total number of source counts divided by
the square-root of the total source variance, as determined from the weight image.

pmPSFClump pmSourcePSFClump(psArray *sources, psMetadata *metadata);

We use the source moments to make an initial, approximate source classification, and as part of the information needed
to build a PSF model for the image. As long as the PSF shape does not vary excessively across the image, the sources
which are represented by a PSF (the start) will have very similar second moments. The function pmSourcePSFClump
searches a collection of sources with measured moments for a group with moments which are all very similar. The
function returns a pmPSFClump structure, representing the centroid and size of the clump in the σx, σy second-moment
plane.

The goal is to identify and characterize the stellar clump within the σx, σy plane. To do this, an image is constructed to
represent this plane. The units of σx and σy are in image pixels. A pixel in this analysis image represents 0.1 pixels in
the input image. The dimensions of the image need only be 10 pixels. The peak pixel in this image (above a threshold of
half of the image maximum) is found. The coordinates of this peak pixel represent the 2D mode of the σx, σy distribution.
The sources with σx, σy within 0.2 pixels of this value are then used to calculate the median and standard deviation of the
σx, σy values. These resulting values are returned via the pmPSFClump structure.

The return value indicates the success (TRUE) of the operation.

limit the S/N of the candidate sources (part of Metadata)? (TBD)

save the clump parameters on the Metadata (TBD)
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bool pmSourceRoughClass(psArray *sources, psMetadata *metadata, pmPSFClump clump)

Based on the specified data values, make a guess at the source classification. The sources are provides as a psArray
of pmSource entries. Definable parameters needed to make the classification are provided to the routine with the
psMetadata structure. The rules below refer to values which can be extracted from the metadata using the given
keywords. Except as noted, the data type for these parameters are psF32.

The following rules are used to make the classification. The number of saturated pixels are counted, based on the mask
having the PSPHOT_MASK_SATURATED bit set. Sources which are greater than 1σ larger than the pmPSFClump center
in both dimensions and which have more than a single saturated pixel are identified as being a likely saturated star (type
= PM_SOURCE_STAR, mode = PM_SOURCE_SATSTAR). Sources which are not so large but which have multiple
saturated pixels are identified as saturated regions, ie bleed trails or hot columns (type = PM_SOURCE_SATURATED).

Sources with
σx < 0.05

or
σy < 0.05

should be identified as type PM_SOURCE_DEFECT (likely cosmic ray pixel).

Sources with
σx > CLUMPx + 3CLUMPdx

and
σy > CLUMPy + 3CLUMPdy

should be identified as type PM_SOURCE_EXTENDED.

All other sources should be identified as type PM_SOURCE_STAR. Of these sources, the mode should be set to
PM_SOURCE_PSFSTAR for any sources with SN greater than PSF_SN_LIM which are within 1.5σ of the PSF clump
center. These sources are used to determine a guess at the shape of the PSF, based on the collection of σx and σy values.

8.4 Object Fitting

We need a way to fit a particular functional model to an object. PSLib includes the psMinimizeLMChi2 and
psMinimizePowell functions, which form the core of this processes. However, additional support functions and
wrapping functions are necessary for the specific case of source fitting. The operations can be broken down into discrete
steps:

8.4.1 Identify the pixels of interest

8.4.2 Make a guess at the model parameters. For some models, the parameters may be guessed based on only the
moments. For others, additional measurements must be made.

8.4.3 Construct the input vectors from the pixels of interest.

8.4.4 Apply fitting function psMinimizeLMChi2()

8.4.5 Construct model image.

8.4.6 Subtract model from image.
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bool pmSourceModelGuess(pmSource *source, const psImage *image, pmModelType model);

Convert available data to an initial guess for the given model. This function allocates a pmModel entry for the pmSource
structure based on the provided model selection. The method of defining the model parameter guesses are determined by
using pmModelGuessFunc_GetFunction to determine the guess function for the model of interest. The returned
function is called and the guess values are used to set the model parameters. The function returns TRUE on success or
FALSE on failure.

psArray *pmSourceContour(const pmSource *source, const psImage *image, float level, pmContourType type);

Find points in a contour for the given source at the given level. If type is PM_CONTOUR_CRUDE, the contour is found
by starting at the source peak, running along each pixel row until the level is crossed, then interpolating to the level
coordinate for that row. This is done for each row, with the starting point determined by the midpoint of the previous row,
until the starting point has a value below the contour level. The returned contour consists of two vectors giving the x and
y coordinates of the contour levels. This function may be used as part of the model guess inputs.

Other contour types may be specified in the future for more refined contours (TBD)

bool pmSourceFitModel(pmSource *source, psImage *image);

Fit the requested model to the specified source. The starting guess for the model is given by the input source.model
parameter values. The pixels of interest are specified by the source.pixels and source.mask entries. This function
calls psMinimizeLMChi2() on the image data. The function returns TRUE on success or FALSE on failure.

bool pmModelFitStatus (pmModel *model);

This function wraps the call to the model-specific function returned by pmModelFitStatusFunc_GetFunction.
The model-specific function examines the model parameters, parameter errors, Chisq, S/N, and other parameters available
from model to decide if the particular fit was successful or not.

bool pmSourceAddModel(psImage *image, pmSource *source, bool center, bool sky);
bool pmSourceSubModel(psImage *image, pmSource *source, bool center, bool sky);

Add or subtract the given source model flux to/from the provided image. The boolean option center selects if the
source is re-centered to the image center or if it is placed at its centroid location. The boolean option sky selects if the
background sky is applied (TRUE) or not. The pixel range in the target image is at most the pixel range specified by the
source.pixels image. The success status is returned.

bool pmSourcePhotometry (float *fitMag, // integrated fit magnitude
float *obsMag, // aperture flux magnitude
pmModel *model, // model used for photometry
psImage *image, // image pixels to be used
psImage *mask // mask of pixels to ignore

);

The function returns both the magnitude of the fit, defined as −2.5 log flux, where the flux is integrated under the model,
theoretically from a radius of 0 to infinity. In practice, we integrate the model beyond 50σ. The aperture magnitude is
defined as −2.5 log flux, where the flux is summed for all pixels which are not excluded by the aperture mask. The model
flux is calculated by calling the model-specific function provided by pmModelFlux_GetFunction.
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int pmSourceDophotType (pmSource *source);

This function converts the source classification into the closest available approximation to the Dophot classification
scheme. The following list gives the correspondence:

PM_SOURCE_DEFECT: 8
PM_SOURCE_SATURATED: 8
PM_SOURCE_SATSTAR: 10
PM_SOURCE_PSFSTAR: 1
PM_SOURCE_GOODSTAR: 1
PM_SOURCE_POOR_FIT_PSF: 7
PM_SOURCE_FAIL_FIT_PSF: 4
PM_SOURCE_FAINTSTAR: 4
PM_SOURCE_GALAXY: 2
PM_SOURCE_FAINT_GALAXY: 2
PM_SOURCE_DROP_GALAXY: 2
PM_SOURCE_FAIL_FIT_GAL: 2
PM_SOURCE_POOR_FIT_GAL: 2
PM_SOURCE_OTHER: ?

int pmSourceSextractType (pmSource *source);

This function converts the source classification into the closest available approximation to the Sextractor classification
scheme. the correspondence is not yet defined (TBD) .

9 Image Combination

The image combination for Pan-STARRS will employ an iterative approach, in order to identify cosmic rays. The first
pass involves transforming and combining the input images, and noting pixels which are apparently deviant. These pixels
are examined in further detail, before a subset of them are declared to be bad, whereupon these pixels are re-transformed,
and the images are combined properly. Here we introduce two functions which will perform the combination and exam-
ination steps. Prototype code exists for each of these functions. For further details, see the document about image
combination for Pan-STARRS. (TBD)

9.1 Combining images

psImage *pmCombineImages(psImage *combined, // Combined image
psArray **questionablePixels, // Array of rejection masks
const psArray *images, // Array of input images
const psArray *errors, // Array of input error images
const psArray *masks,// Array of input masks
unsigned int maskVal, // Mask value
const psPixels *pixels, // Pixels to combine
int numIter, // Number of rejection iterations
float sigmaClip, // Number of standard deviations at which to reject
const psStats *stats // Statistics to use in the combination
);

pmCombineImages shall combine the input images, returning the combined image and a list of
questionablePixels in each input image. The array of error images, errors, shall be used to calculate the value
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in the combined image and the list of questionable pixels, if non-NULL. Pixels whose corresponding value in the array of
mask images, masks, matches maskVal shall be masked from the combination. The images, errors and masks
arrays, if non-NULL, shall all carry the same number of images; otherwise the function shall generate an error and return
NULL. The sizes of all images in the images, errors and masks arrays shall be identical; otherwise the function shall
generate an error and return NULL.

If pixels is non-NULL, only those pixels specified shall be combined. The combination consists of numIter iterations
in which a stack of pixels is combined using the specified stats. In each iteration, questionable pixels are identified as
lying more than sigmaClip standard deviations from the combined value; these pixels are excluded from the stack for
the next iteration. The value for the combined image is that produced by the first iteration (i.e., with no pixels excluded
except those which have their corresponding mask match the maskVal); this allows subsequent calls to the function to
only act on a small fraction of the pixels, since questionable pixels identified in the first call of the function will be properly
rejected at a later point (see the example, below).

In the event that images or stats are NULL, the function shall generate an error and return NULL.

9.2 Rejecting pixels

psArray *pmRejectPixels(const psArray *images, // Array of input images
const psArray *masks, // Array of masks for input images
const psArray *pixels, // These are the pixels which were rejected in the combination
const psArray *inToOut, // Transformations from input to output system
const psArray *outToIn, // Transformations from output to input system
float rejThreshold, // Rejection threshold
float gradLimit // Gradient limit
);

This algorithm will change: an addition will be made to avoid masking pixels in the wings of a star when combining
images taken in different seeing, and the gradient limit criteria will be changed. (TBD)

pmRejectPixels inspects those questionable pixels identified by pmCombineImages to determine if they are
truly discrepant. This inspection is performed in the coordinate frame of the detector, where the pixels haven’t been
smeared by transformation. Two tests are applied to each of the images:

9.2.1 The list of questionable pixels for an image is converted to an image which is transformed back to the coordinate
frame of the detector. Those pixels in the detector frame which have a value exceeding rejThreshold are
suspected cosmic rays and subjected to the next test. Depending on the value of the rejThreshold, this test
basically amounts to demanding that questionable pixels neighbor each other in the transformed image.

9.2.2 The cores of point sources may mimic a cosmic ray, especially in under-sampled images. To minimize flagging
stars as cosmic rays, we determine the gradient around the pixel of interest; if the gradient is large, then the
pixel is likely the core of a point source. In order to reliably measure the gradient in the presence of a suspected
cosmic ray, we use the companion images — the gradient is the mean gradient at the corresponding position on
the other images. In order to calculate the corresponding positions, the inToOut and outToIn transformations
are required. If the gradient is less than gradLimit, then the pixel is identified as a cosmic ray.

The function shall return an array of psPixels, one for each of the input images, containing pixels that have been
identified as cosmic rays according to the above criteria.

If any of the input pointers are NULL, then the function shall generate an error and return NULL.
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9.3 Example

Here is an example of what the image combination routine looks like, demonstrating how the various pieces fit together.
The inputs are:

• psArray *inputs: Input detector images, each a psImage of type psF32

• psArray *inputMask: Input mask images, each a psImage of type psU8

• psArray *inputsErr: Input error images, each a psImage of type psF32

• psPlaneTransform *skyToDetector: Maps from sky coordinates to detector coordinates, each a
psPlaneTransform

• psRegion *combineRegion: Sky coordinate pixels to combine

• int numIter: Number of iterations in combination

• float rejThreshold: Threshold for rejection

• float gradLimit: Limit for gradient

The output is the combined image.

psArray *transformed = psArrayAlloc(nImages); // Array of transformed images
psArray *transformedErr = psArrayAlloc(nImages); // Array of transformed error images
psArray *transformedMask = psArrayAlloc(nImages); // Array of masks for transformed images

for (int i = 0; i < nImages; i++) {
psPixels *blanks = NULL; // List of blank pixels
transformed->data[i] = psImageTransform(NULL, &blanks, inputs->data[i],

inputMask->data[i], inputMaskVal, NAN, skyToDetector,
combineRegion, NULL, PS_INTERPOLATE_BILINEAR);

transformedErr->data[i] = psImageTransform(NULL, NULL, inputsErr->data[i], inputMask->data[i],
inputMaskVal, NAN, skyToDetector, combineRegion, NULL,
PS_INTERPOLATE_BILINEAR_VARIANCE);

psImage *skyImage = transformed->data[i]; // Dereference the transformed image
psRegion *blankRegion = psRegionAlloc(0, 0, skyImage->numCols, skyImage->numRows); // Size of

// transformed
// image

transformedMask->data[i] = psPixelsToMask(NULL, blanks, *blankRegion, PS_MASK_BLANK);
psFree(blankRegion);
psFree(blanks);

}

psArray *rejected = NULL; // Array of rejected pixel lists
psStats *combineStats = psStatsAlloc(PS_STAT_SAMPLE_MEAN); // Statistic to use in doing the combination
psImage *combined = pmCombineImages(NULL, &rejected, transformed, transformedErr, transformedMask, 0,

NULL, numIter, sigmaClip, combineStats); // Combined image
psArray *bad = pmRejectPixels(inputs, rejected, NULL, skyToDetector, rejThreshold, gradLimit); // Bad pix
psPixels *combinePixels = NULL; // Pixels to combine
for (int i = 0; i < nImages; i++) {

psPixels *badSource = psPixelsTransform(NULL, bad->data[i], skyToDetector); // Bad pixels on the input
psImage *badMask = psPixelsToMask(NULL, badSource, PS_MASK_COSMICRAY); // Mask image for the input
(void)psBinaryOp(inputMask->data[i], inputMask->data[i], "|", badMask); // Put CRs into original mask
psFree(badSource);
psFree(badMask);

combinePixels = psPixelsConcatenate(redo, bad->data[i]);

// Update transformed image
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psPixels *blanks = NULL; // List of blank pixels
transformed->data[i] = psImageTransform(transformed->data[i], &blanks, inputs->data[i],

inputMask->data[i], inputMaskVal | PS_MASK_COSMICRAY, NAN,
skyToDetector, combineRegion, bad->data[i],
PS_INTERPOLATE_BILINEAR);

transformedErr->data[i] = psImageTransform(transformedErr->data[i], NULL, inputsErr->data[i],
inputMask->data[i], inputMaskVal | PS_MASK_COSMICRAY,
NAN, skyToDetector, combineRegion, bad->data[i],
PS_INTERPOLATE_BILINEAR_VARIANCE);

psImage *skyImage = transformed->data[i]; // Dereference the transformed image
psRegion *blankRegion = psRegionAlloc(0, 0, skyImage->numCols, skyImage->numRows); // Size of

// transformed
// image

transformedMask->data[i] = psPixelsToMask(transformedMask->data[i], blanks, *blankRegion,
PS_MASK_BLANK);

psFree(blankRegion);
psFree(blanks);

}
psFree(bad);

// Combine with no rejection
combined = pmCombineImages(combined, NULL, transformed, transformedErr, transformedMask,

PS_MASK_BLANK, combinePixels, 0, 0.0, combineStats);
psFree(combineStats);
psFree(combinePixels);
psFree(transformed);
psFree(transformedErr);
psFree(transformedMask);

10 Image Subtraction

Image subtraction is arguably the best method of identifying faint variable sources in images with different point-spread
functions. It relies on fitting for a convolution kernel that minimizes the residuals in subtracting small regions of the image.
The use of a convolution kernel consisting of a linear combination of basis functions allows the problem to be solved with
only modest computing power.

10.1 The kernels

We will allow for the use of two convolution kernels. The first is that employed by the popular image subtraction program,
ISIS, consisting of Gaussians modified by polynomials:

Bijk(u, v) = e−(u2+v2)/2σ2

i ujvk (5)

The second simply consists of delta functions, which we refer to as POIS (Pan-STARRS Optimal Image Subtraction):

Bij(u, v) = δ(u− i) δ(v − j) (6)

For further details, see the document about image subtraction for Pan-STARRS. (TBD) The former is widely used,
while the second appears to be equally useful and faster, though not as tried and proven.

typedef enum {
PM_SUBTRACTION_KERNEL_POIS, // POIS kernel --- delta functions
PM_SUBTRACTION_KERNEL_ISIS // ISIS kernel --- gaussians modified by polynomials

} pmSubtractionKernelsType;
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In order to simplify the book-keeping for the kernels, we will define a pmSubtractionKernels, which keeps track
of the details of the each of the kernel basis functions:

typedef struct {
pmSubtractionKernelType type; // Type of kernels --- allowing the use of multiple kernels
int size; // Size of kernel in x and y
int spatialOrder; // Maximum order of spatial variations
psVector *u, *v; // Offset (for POIS) or polynomial order (for ISIS)
psVector *sigma; // Width of Gaussian (for ISIS)
psVector *xOrder, *yOrder; // Spatial polynomial order (for all)
int subIndex; // Index of kernel to be subtracted to maintain flux conservation
psArray *preCalc; // Array of images containing pre-calculated kernel (to

// accelerate ISIS; don’t use for POIS)
} pmSubtractionKernels;

This structure caters for both choices of kernel type. For a POIS kernel, the u and v vectors shall be set to the coordinates
for the delta functions for the corresponding kernel. For an ISIS kernel, the sigma vector shall be set to the Gaussian
widths and the u and v vectors shall be set to the orders of the modifying polynomials for the corresponding kernel. For
both choices of kernel, the xOrder and yOrder vectors specify the order of the spatial variation.

In order to maintain flux conservation when the kernel is spatially variable, we need to treat one kernel in the set differently.
The convolutions for this kernel, identified by the subIndex, are calculated in the usual way, while all others have the
subIndex kernel subtracted from them. For details, see the paper by Alard (2000, A&AS, 144, 363).

Since the ISIS kernels are continuous functions, it is worth pre-calculating them instead of calculating them each time
they are required. The preCalc array, consisting of psImages is provided for this purpose.

The pmSubtractionKernels are generated by the following functions:

pmSubtractionKernels *pmSubtractionKernelsAllocPOIS(int size, int spatialOrder);
pmSubtractionKernels *pmSubtractionKernelsAllocISIS(const psVector *sigmas, const psVector *orders,

int size, int spatialOrder);

pmSubtractionKernelsAllocPOIS shall generate the pmSubtractionKernels suitable for the POIS kernel
basis set. This involves setting the u, v, xOrder and yOrder to the appropriate values. size is the half-size of the
kernel, and spatialOrder is the maximum spatial order (the spatial variation is xiyj with i + j < spatialOrder).
The subIndex is set to the kernel which has u = 0, v = 0, xOrder = 0 and yOrder = 0. There should be (2
* size + 1) * (2 * size + 1) * (spatialOrder + 1) * (spatialOrder + 2) / 2 kernels.

pmSubtractionKernelsAllocISIS shall generate the pmSubtractionKernels suitable for the ISIS kernel
basis set. This involves setting the sigma, u, v, xOrder and yOrder to the appropriate values, as well as generating
the preCalc images. Note that the sigma vector contained within the pmSubtractionKernels is not the same
as the input sigmas vector, but contains repeated entries. size is the half-size of the kernel, which specifies the size
of the preCalc images. The spatialOrder is the maximum spatial order (the spatial variation is x iyj with i + j <
spatialOrder). The subIndex is set to the kernel which has u = 0, v = 0, xOrder = 0 and yOrder = 0,
for the first of the Gaussian widths in the sigmas vector.

10.2 Stamps

Sub-regions on an image which are used to derive the best-fit convolution kernel are referred to as “stamps”.
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typedef struct {
int x, y; // Position
psImage *matrix; // Associated matrix
psVector *vector; // Associated vector
pmStampStatus status; // Status of stamp

} pmStamp;

A stamp is the region around a central pixel, x,y. The matrix and vector are generated in the process of solving for
the best-fit convolution kernel; each of these will likely be of type psF64 in order to maintain the best possible precision
(we will be summing squares). In order to allow us to throw out stamps without having to laboriously recompute the total
least-squares matrix and vector, we use a separate matrix and vector for each stamp.

To allow iteration on the choice of stamps, a stamp contains a status, an enumerated type:

typedef enum {
PM_STAMP_USED, // Use this stamp
PM_STAMP_REJECTED, // This stamp has been rejected
PM_STAMP_RECALC, // Having been reset, this stamp needs to be recalculated
PM_STAMP_NONE // No stamp in this region

} pmStampStatus;

psArray *pmSubtractionFindStamps(psArray *stamps, // Output stamps, or NULL
const psImage *image, // Image for which to find stamps
const psImage *mask, // Mask
unsigned int maskVal, // Value for mask
float threshold, // Threshold for stamps in the image
int xNum, int yNum, // Number of stamps in x and y
int border // Border around image to ignore (should be size of kernel)
);

pmSubtractionFindStamps returns an array of stamps on the image suitable for use in calculating the best-fit
convolution kernel. Except for a border all the way around, the image is broken into xNum × yNum rectangles; there
will be a stamp within each rectangle. If stamps is non-NULL, then the function shall only attempt to identify a new
stamp in a particular rectangle if the corresponding stamp status is PM_STAMP_REJECTED.

A stamp shall be recognized as the pixel with the greatest value that does not have the corresponding pixel in the mask
matching maskVal. If the value of the this pixel does not exceed threshold, then the stamp status shall be marked
as PM_STAMP_NONE, which means that the stamp will be ignored in future iterations. If a legitimate stamp is found
within the region, then its status shall be changed to PM_STAMP_RECALC.

10.3 Solving for the kernel

Calculating the best-fit convolution kernel requires solving a matrix equation, the elements of which are obtained by
applying the kernel basis functions to the stamps. The final matrix and vector are the sum of the matrices and vectors
obtained for each of the individual stamps.

bool pmSubtractionCalculateEquation(psArray *stamps, // The stamps for which to calculate the equation
const psImage *reference, // Reference image
const psImage *input, // Input image
const psSubtractionKernels *kernels, // The kernel basis functions
int footprint // Half-size of region over which to calculate equation
);
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pmSubtractionCalculateEquation shall calculate the matrix and vector for each of the stamps which
have status set to PM_STAMP_RECALC. The calculation is made over a region with a half size of footprint on the
reference and input images, using each of the kernels. In the event that any of the input pointers are NULL, the
function shall generate an error and return false; otherwise, the function shall return true.

The vector is:
vi =

∑

x,y

I(x, y)[R(x, y) ⊗Bi(u, v)]/σ(x, y)2 (7)

and the matrix is:
Mij =

∑

x,y

[R(x, y)⊗Bi(u, v)] [R(x, y)⊗Bj(u, v)] /σ(x, y)2 (8)

where I(x, y) is the input image, R(x, y) is the reference image, Bi(u, v) is the i-th kernel basis function, ⊗ denotes
convolution, σ(x, y) = R(x, y)1/2 is an estimate of the error, and the sum over x, y indicates summing over the stamp
regions.

In addition to the each of the kernels, an additional parameter for which we must solve is the difference in the back-
ground level between the reference and input images. The appropriate term shall be added to the matrix and
vector.

In order to maintain flux conservation when the kernel is spatially variable, for each of the kernel basis functions apart
from the first, the kernel actually employed shall be the first kernel function subtracted from the original kernel function.

Having calculated the matrix equation for a stamp, its status is set to PM_STAMP_USED.

Since this step is one of the major rate-limiting factors in image subtraction, care should be taken with optimization.

psVector *pmSubtractionSolveEquation(psVector *solution, // Solution vector, or NULL
const psArray *stamps // Array of stamps
);

pmSubtractionSolveEquation shall solve the matrix equation provided by each of the stamps, returning the
solution vector. This involves summing the matrix and vector of each of the stamps which have status set
to PM_STAMP_USED, and multiplying the inverse of the matrix by the vector. If the solution is NULL, then the
function shall allocate and return a new vector; otherwise, the solution vector shall be modified in-place. If stamps
is NULL, then the function shall generate an error and return NULL. The type of the solution vector should be psF64,
since the matrix equation involves summing squares.

10.4 Rejection of stamps

bool pmSubtractionRejectStamps(psArray *stamps, // Array of stamps to check for rejection
psImage *mask, // Mask image
unsigned int badStampMaskVal, // Value to use in mask for bad stamp
int footprint, // Region to mask if stamp is bad
float sigmaRej, // Number of RMS deviations above zero at which to reject
const psImage *refImage, // Reference image
const psImage *inImage, // Input image
const psVector *solution, // Solution vector
const pmSubtractionKernels *kernels // Array of kernel parameters
);
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pmSubtractionRejectStamps shall apply the solution to the stamps, rejecting stamps for which the mean
square residuals exceed sigmaRej RMS deviations from zero. stamps which are rejected have their status set
to PM_STAMP_REJECTED, and have pixels within footprint of the corresponding position in the mask set to
badStampMaskVal so they will not be used again.

The deviations are calculated through extracting the stamps from the refImage and inImage, convolving the reference
stamp by the best-fit kernel (derived from the solutions vector and the kernels), subtracting and then dividing by
the stamp from the input image, and then squaring to obtain the mean square residual.

10.5 Visualization of kernel

Having solved for the best-fit kernel, it is often useful to visualize it.

psImage *pmSubtractionKernelImage(psImage *out, const psVector *solution,
const pmSubtractionKernels *kernels, float x, float y);

pmSubtractionKernelImage shall create an image of the kernel from the solution vector and the kernels.
The relative position (between -1 and +1) on the image at which to evaluate the kernel (important if the kernel is spatially
variable) is specified by x and y. If out is NULL, then the function shall allocate a new image of sufficient size (matching
the precalc images), and return the result; otherwise, out shall be modified in-place.

10.6 Example

Here is an example of what the image subtraction routine looks like, demonstrating how the various pieces fit together.
The inputs are:

• psImage *reference: Reference image

• psImage *refMask: Mask for reference image

• psImage *input: Input image

• psImage *inMask: Mask for input image

• unsigned int maskVal: Value to be masked

• pmSubtractionKernelType kernelType: Type of kernel to use

• int kernelHalfSize: Half the kernel size (full size is 2*kernelHalfSize + 1)

• psVector *sigmas: Widths for the ISIS Gaussians

• psVector *polyOrders: Polynomial orders for ISIS Gaussians

• int spatialOrder: Maximum spatial order for spatially variable kernel

• float stampThreshold: Threshold for finding stamps

• int nStampsX, nStampsY: Number of stamps in x and y
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• int stampSize: Half size of stamp footprint

• int numIter: Number of iterations on the stamps

• float sigmaRej: Rejection threshold for stamps

The output is the subtracted image and the corresponding mask.

// Mask around bad pixels in the reference image. There are two cases to worry about:
// 1. Bad pixels within the kernel, which will affect the subtracted image
// 2. Bad pixels within the stamp, which affects the calculation of the kernel
psImage *subMask = psImageGrowMask(NULL, refMask, maskVal, kernelHalfSize, PS_MASK_NEAR_BAD);
(void)psImageGrowMask(subMask, refMask, maskVal, stampSize, PS_MASK_BAD_STAMP);
// Add in the mask for the input image. Don’t need to grow this, since it isn’t convolved.
(void)psBinaryOp(subMask, subMask, "|", inMask);

// Generate kernel basis functions
psArray *kernels = NULL; // Array of kernel basis functions
switch (kernelType) {

case PM_SUBTRACTION_KERNEL_POIS:
// Create the kernel basis functions
kernels = pmSubtractionKernelsGeneratePOIS(kernelHalfSize, spatialOrder);
break;

case PM_SUBTRACTION_KERNEL_ISIS:
kernels = pmSubtractionKernelsGenerateISIS(sigmas, polyOrders, kernelHalfSize, spatialOrder);
break;

default:
barf();

}

psArray *stamps = NULL; // Array of stamps
psVector *kernelCoeffs = NULL; // Coefficients for the kernels
bool rejected = true; // Did we reject a stamp in the last iteration?

// Iterate for a solution
for (int iter = 0; iter < numIter && rejected; iter++) {

// Find stamps
stamps = pmSubtractionFindStamps(stamps, reference, subMask, maskVal | PS_MASK_BAD_STAMP,

stampThreshold, nStampsX, nStampsY, stampSize, kernelHalfSize);

// Generate and solve matrix equations
(void)pmSubtractionCalculateEquation(stamps, reference, input, kernels, stampSize);
kernelCoeffs = pmSubtractionSolveEquation(kernelCoeffs, stamps);

// Reject bad stamps
rejected = pmSubtractionRejectStamps(stamps, subMask, PS_MASK_BAD_STAMP, stampSize, sigmaRej,

reference, input, kernelCoeffs, kernels);
}

// Convolve the reference image
psImage *referenceConvolved = pmSubtractionConvolveImage(NULL, reference, subMask, kernelCoeffs, kernels);
// Subtract
psImage *subtracted = (psImage*)psBinaryOp(NULL, input, "-", referenceConvolved);

// What does the kernel look like?
psImage *kernelImage = pmSubtractionKernelImage(NULL, kernelCoeffs, kernels, 0.0, 0.0);
// Check/save kernel image, print statistics....

psFree(referenceConvolved);
psFree(stamps);
psFree(kernels);
psFree(kernelCoeffs);
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A Basic Object Models

We specify a variety of basic object models which are required. Details of the model functional forms, parameters, and
the derivatives are specified in the ADD.

A.0.1 Real 2D Gaussian

float pmMinLM_Gauss2D(psVector *deriv, psVector *params, psVector *x);

This function is a two-dimensional Gaussian with an elliptical cross-section and a constant local background.

The initial guess for the Gaussian parameters may be taken from the moments, peak value, and local sky.

A.0.2 Pseudo-Gaussian

float pmMinLM_PseudoGauss2D(psVector *deriv, psVector *params, psVector *x);

This function is a polynomial approximation of a 2D Gaussian otherwise very similar to the real Gaussian. It is used in
place of a real Gaussian for speed.

The initial guess for the Gaussian parameters may be taken from the moments, peak value, and local sky.

A.0.3 Waussian

float pmMinLM_Wauss2D(psVector *deriv, psVector *params, psVector *x);

The Waussian is a modified polynomial approximation of a 2D Gaussian, with non-linear polynomial terms having variable
coefficients, rather than the Taylor series values of 1/2 and 1/6.

A.0.4 Twisted Gaussian

float pmMinLM_TwistGauss2D(psVector *deriv, psVector *params, psVector *x);

This function describes an object with power-law wings and a flattened core, where the core has a different contour from
the wings.

The initial guess for the Gaussian parameters may be taken from the moments, peak value, and local sky.

future galaxy models to be implemented (TBD)

A.0.5 Sersic Galaxy Model

float pmMinLM_Sersic(psVector *deriv, psVector *params, psVector *x);
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A.0.6 Sersic with Core Galaxy Model

float pmMinLM_SersicCore(psVector *deriv, psVector *params, psVector *x);

A.0.7 Pseudo Sersic Galaxy Model

float pmMinLM_PseudoSersic(psVector *deriv, psVector *params, psVector *x);

B Example Camera Configuration Files

Some of these don’t exactly match the specifications of this document yet, because they have been changed from
the prototype, but it is hoped that they will be useful. Questions are welcome. (TBD)

B.1 MegaCam Raw

# The raw MegaCam data comes off the telescope with each of the chips stored in extensions of a MEF file.

# How to identify this type
RULE METADATA

TELESCOP STR CFHT 3.6m
DETECTOR STR MegaCam
EXTEND BOOL T
NEXTEND S32 72

END

# How to read this data
PHU STR FPA # The FITS file represents an entire FPA
EXTENSIONS STR CELL # The extensions represent cells

# What’s in the FITS file?
CONTENTS METADATA

# Extension name, chip name:type
amp00 STR ccd00:left
amp01 STR ccd00:right
amp02 STR ccd01:left
amp03 STR ccd01:right
amp04 STR ccd02:left
amp05 STR ccd02:right
amp06 STR ccd03:left
amp07 STR ccd03:right
amp08 STR ccd04:left
amp09 STR ccd04:right
amp10 STR ccd05:left
amp11 STR ccd05:right
amp12 STR ccd06:left
amp13 STR ccd06:right
amp14 STR ccd07:left
amp15 STR ccd07:right
amp16 STR ccd08:left
amp17 STR ccd08:right
amp18 STR ccd09:left
amp19 STR ccd09:right
amp20 STR ccd10:left
amp21 STR ccd10:right
amp22 STR ccd11:left
amp23 STR ccd11:right
amp24 STR ccd12:left
amp25 STR ccd12:right
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amp26 STR ccd13:left
amp27 STR ccd13:right
amp28 STR ccd14:left
amp29 STR ccd14:right
amp30 STR ccd15:left
amp31 STR ccd15:right
amp32 STR ccd16:left
amp33 STR ccd16:right
amp34 STR ccd17:left
amp35 STR ccd17:right
amp36 STR ccd18:left
amp37 STR ccd18:right
amp38 STR ccd19:left
amp39 STR ccd19:right
amp40 STR ccd20:left
amp41 STR ccd20:right
amp42 STR ccd21:left
amp43 STR ccd21:right
amp44 STR ccd22:left
amp45 STR ccd22:right
amp46 STR ccd23:left
amp47 STR ccd23:right
amp48 STR ccd24:left
amp49 STR ccd24:right
amp50 STR ccd25:left
amp51 STR ccd25:right
amp52 STR ccd26:left
amp53 STR ccd26:right
amp54 STR ccd27:left
amp55 STR ccd27:right
amp56 STR ccd28:left
amp57 STR ccd28:right
amp58 STR ccd29:left
amp59 STR ccd29:right
amp60 STR ccd30:left
amp61 STR ccd30:right
amp62 STR ccd31:left
amp63 STR ccd31:right
amp64 STR ccd32:left
amp65 STR ccd32:right
amp66 STR ccd33:left
amp67 STR ccd33:right
amp68 STR ccd34:left
amp69 STR ccd34:right
amp70 STR ccd35:left
amp71 STR ccd35:right

END

# Specify the cell data
CELLS METADATA

left METADATA # Left amplifier
CELL.BIASSEC STR HEADER:BIASSEC
CELL.TRIMSEC STR HEADER:DATASEC
CELL.XPARITY S32 1 # We could have specified this as a DEFAULT, but this works

END
right METADATA # Right amplifier

CELL.BIASSEC STR HEADER:BIASSEC
CELL.TRIMSEC STR HEADER:DATASEC
CELL.XPARITY S32 -1 # This cell is read out in the opposite direction

END
END

# How to translate PS concepts into FITS headers
TRANSLATION METADATA

FPA.NAME STR EXPNUM
FPA.AIRMASS STR AIRMASS
FPA.FILTER STR FILTER
FPA.POSANGLE STR ROTANGLE
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FPA.RA STR RA
FPA.DEC STR DEC
FPA.RADECSYS STR RADECSYS
FPA.MJD STR MJD-OBS
CELL.EXPOSURE STR EXPTIME
CELL.DARKTIME STR DARKTIME
CELL.XBIN STR CCDBIN1
CELL.YBIN STR CCDBIN2
CELL.GAIN STR GAIN
CELL.READNOISE STR RDNOISE
CELL.SATURATION STR SATURATE

END

# Default PS concepts that may be specified by value
DEFAULTS METADATA

CELL.BAD S32 0
CELL.YPARITY_DEPEND STR CHIP.NAME
CELL.YPARITY METADATA

ccd00 S32 -1
ccd01 S32 -1
ccd02 S32 -1
ccd03 S32 -1
ccd04 S32 -1
ccd05 S32 -1
ccd06 S32 -1
ccd07 S32 -1
ccd08 S32 -1
ccd09 S32 -1
ccd10 S32 -1
ccd11 S32 -1
ccd12 S32 -1
ccd13 S32 -1
ccd14 S32 -1
ccd15 S32 -1
ccd16 S32 -1
ccd17 S32 -1
ccd18 S32 1
ccd19 S32 1
ccd20 S32 1
ccd21 S32 1
ccd22 S32 1
ccd23 S32 1
ccd24 S32 1
ccd25 S32 1
ccd26 S32 1
ccd27 S32 1
ccd28 S32 1
ccd29 S32 1
ccd30 S32 1
ccd31 S32 1
ccd32 S32 1
ccd33 S32 1
ccd34 S32 1
ccd35 S32 1

END
END

# How to translate PS concepts into database lookups
DATABASE METADATA

TYPE dbEntry TABLE COLUMN GIVENDBCOL GIVENPS
# CELL.GAIN dbEntry Camera gain chipId,cellId CHIP.NAME,CELL.NAME
# CELL.READNOISE dbEntry Camera readNoise chipId,cellId CHIP.NAME,CELL.NAME

# A database entry refers to a particular column (COLUMN) in a
# particular table (TABLE), given certain PS concepts (GIVENPS) that
# match certain database columns (GIVENDBCOL).

END
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B.2 MegaCam Splice

# The spliced MecaCam data is stored in single extensions for each chip

# How to recognise this type
RULE METADATA

TELESCOP STR CFHT 3.6m
DETECTOR STR MegaCam
EXTEND BOOL T
NEXTEND S32 36

END

# How to read this data
PHU STR FPA # The FITS file represents an entire FPA
EXTENSIONS STR CHIP # The extensions represent chips

# What’s in the FITS file?
CONTENTS METADATA

# Extension name, components
ccd00 STR left right
ccd01 STR left right
ccd02 STR left right
ccd03 STR left right
ccd04 STR left right
ccd05 STR left right
ccd06 STR left right
ccd07 STR left right
ccd08 STR left right
ccd09 STR left right
ccd10 STR left right
ccd11 STR left right
ccd12 STR left right
ccd13 STR left right
ccd14 STR left right
ccd15 STR left right
ccd16 STR left right
ccd17 STR left right
ccd18 STR left right
ccd19 STR left right
ccd20 STR left right
ccd21 STR left right
ccd22 STR left right
ccd23 STR left right
ccd24 STR left right
ccd25 STR left right
ccd26 STR left right
ccd27 STR left right
ccd28 STR left right
ccd29 STR left right
ccd30 STR left right
ccd31 STR left right
ccd32 STR left right
ccd33 STR left right
ccd34 STR left right
ccd35 STR left right

END

# Specify the cells
CELLS METADATA

left METADATA
CELL.BIASSEC STR HEADER:BSECA
CELL.TRIMSEC STR HEADER:TSECA

END

right METADATA
CELL.BIASSEC STR HEADER:BSECB
CELL.TRIMSEC STR HEADER:TSECB
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END
END

# How to translate PS concepts into FITS headers
TRANSLATION METADATA

FPA.NAME STR EXPNUM
FPA.AIRMASS STR AIRMASS
FPA.FILTER STR FILTER
FPA.POSANGLE STR ROTANGLE
FPA.RA STR RA
FPA.DEC STR DEC
FPA.RADECSYS STR RADECSYS
FPA.MJD STR MJD-OBS
CELL.EXPOSURE STR EXPTIME
CELL.DARKTIME STR DARKTIME
CELL.XBIN STR CCDBIN1
CELL.YBIN STR CCDBIN2
CELL.GAIN STR GAIN
CELL.READNOISE STR RDNOISE
CELL.SATURATION STR SATURATE

END

# Default PS concepts that may be specified by value
DEFAULTS METADATA

CELL.BAD S32 0
CELL.XPARITY S32 1
CELL.YPARITY S32 1

END

# How to translate PS concepts into database lookups
DATABASE METADATA

TYPE dbEntry TABLE COLUMN GIVENDBCOL GIVENPS
# CELL.GAIN dbEntry Camera gain chipId,cellId CHIP.NAME,CELL.NAME
# CELL.READNOISE dbEntry Camera readNoise chipId,cellId CHIP.NAME,CELL.NAME

# A database entry refers to a particular column (COLUMN) in a
# particular table (TABLE), given certain PS concepts (GIVENPS) that
# match certain database columns (GIVENDBCOL).

END

B.3 LRIS Blue

# The Low Resolution Imager and Spectrograph (LRIS) blue side

# We have no choice but to hard-code the various regions, because Keck
# only stores them as:
# WINDOW = ’1,0,0,2048,4096’
# PREPIX = 51
# POSTPIX = 80
# BINNING = ’1,1 ’
# AMPPSIZE= ’[1:1024,1:4096]’

# I don’t know how we would get the IPP to react to changes in the
# windowing on the fly --- we have no mechanism for setting the region
# sizes on the basis of the above keywords. Therefore, we hard-code
# the regions and assert on our assumptions in the RULE.

# How to identify this type
RULE METADATA

TELESCOP STR Keck I
INSTRUME STR LRISBLUE
AMPLIST STR 1,4,0,0
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WINDOW STR 1,0,0,2048,4096
PREPIX S32 51
POSTPIX S32 80
BINNING STR 1,1
AMPPSIZE STR [1:1024,1:4096]
NAXIS1 S32 4620
NAXIS2 S32 4096

END

# How to read this data
PHU STR FPA # The FITS file represents an entire FPA
EXTENSIONS STR NONE # There are no extensions

# What’s in the FITS file?
CONTENTS METADATA

LeftChip STR amp1 amp2
RightChip STR amp3 amp4

END

# Specify the cell data
CELLS METADATA

amp1 METADATA
CELL.BIASSEC STR VALUE:[1:51,1:4096];[4301:4380,1:4096]
CELL.TRIMSEC STR VALUE:[205:1228,1:4096]
CELL.GAIN STR VALUE:1.2
CELL.READNOISE STR VALUE:5.6

END

amp2 METADATA
CELL.BIASSEC STR VALUE:[52:102,1:4096];[4381:4460,1:4096]
CELL.TRIMSEC STR VALUE:[1229:2252,1:4096]
CELL.GAIN STR VALUE:1.3
CELL.READNOISE STR VALUE:6.7

END

amp3 METADATA
CELL.BIASSEC STR VALUE:[103:153,1:4096];[4461:4540,1:4096]
CELL.TRIMSEC STR VALUE:[2253:3276,1:4096]
CELL.GAIN STR VALUE:1.4
CELL.READNOISE STR VALUE:7.8

END

amp4 METADATA
CELL.BIASSEC STR VALUE:[154:204,1:4096];[4541:4620,1:4096]
CELL.TRIMSEC STR VALUE:[3277:4300,1:4096]
CELL.GAIN STR VALUE:1.5
CELL.READNOISE STR VALUE:8.9

END
END

# How to translate PS concepts into FITS headers
TRANSLATION METADATA

FPA.AIRMASS STR AIRMASS
FPA.FILTER STR BLUFILT
FPA.POSANGLE STR ROTPOSN
FPA.RA STR RA
FPA.DEC STR DEC
CELL.EXPOSURE STR EXPOSURE
CELL.DARKTIME STR EXPOSURE // No special darktime header; use exposure time
CELL.DATE STR DATE // NOTE: There are TWO keywords called "DATE" (creation, exp)!
CELL.TIME STR UT

END

# Default PS concepts that may be specified by value
DEFAULTS METADATA

FPA.RADECSYS STR ICRS
END
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B.4 LRIS Red

# The Low Resolution Imager and Spectrograph (LRIS) red side

# We have no choice but to hard-code the various regions, because Keck
# only stores them as:
# WINDOW = ’0,0,0,2048,2048’
# PREPIX = 20
# POSTPIX = 80
# BINNING = ’1,1 ’
# AMPPSIZE= ’[1:1024,1:4096]’

# I don’t know how we would get the IPP to react to changes in the
# windowing on the fly --- we have no mechanism for setting the region
# sizes on the basis of the above keywords. Therefore, we hard-code
# the regions and assert on our assumptions in the RULE.

# How to identify this type
RULE METADATA

TELESCOP STR Keck I
INSTRUME STR LRIS
AMPLIST STR 2,1,0,0
WINDOW STR 0,0,0,2048,2048
PREPIX S32 20
POSTPIX S32 80
BINNING STR 1, 1
CCDPSIZE STR [1:2048,1:2048]
NAXIS1 S32 2248
NAXIS2 S32 2048
IMTYPE STR TWOAMPTOP

END

# How to read this data
PHU STR CHIP # The FITS file represents a single chip
EXTENSIONS STR NONE # There are no extensions

# What’s in the FITS file?
CONTENTS STR LeftSide RightSide

# Specify the cell data
CELLS METADATA

LeftSide METADATA
CELL.BIASSEC STR VALUE:[1:20,1:2048];[2089:2168,1:2048]
CELL.TRIMSEC STR VALUE:[41:1064,1:2048]
CELL.GAIN STR VALUE:1.2
CELL.READNOISE STR VALUE:5.6

END

RightSide METADATA
CELL.BIASSEC STR VALUE:[21:40,1:2048];[2169:2248,1:2048]
CELL.TRIMSEC STR VALUE:[1065:2088,1:2048]
CELL.GAIN STR VALUE:1.3
CELL.READNOISE STR VALUE:6.5

END
END

# How to translate PS concepts into FITS headers
TRANSLATION METADATA

FPA.AIRMASS STR AIRMASS
FPA.FILTER STR FILTER
FPA.POSANGLE STR POSANG
FPA.RA STR OBJ-RA
FPA.DEC STR OBJ-DEC
CELL.EXPOSURE STR EXPTIME
CELL.DARKTIME STR DARKTIME
CELL.DATE STR DATE-OBS

Modules SDRS 69 January 22, 2006



Pan-STARRS Image Processing Pipeline PSDC-430-012-11

CELL.TIME STR TIME-OBS
END

# Default PS concepts that may be specified by value
DEFAULTS METADATA

FPA.RADECSYS STR ICRS
END

B.5 GPC OTA

# The raw GPC data comes off the telescope with each of the chips stored in separate files

# How to identify this type
RULE METADATA
# TELESCOP STR PS1
# DETECTOR STR GPC1

EXTEND BOOL T
NEXTEND S32 64
NAMPS S32 64

END

# How to read this data
PHU STR CHIP # The FITS file represents a single chip
EXTENSIONS STR CELL # The extensions represent cells

# What’s in the FITS file?
CONTENTS METADATA

# Extension name, type
xy00 STR pitch10u
xy01 STR pitch10u
xy02 STR pitch10u
xy03 STR pitch10u
xy04 STR pitch10u
xy05 STR pitch10u
xy06 STR pitch10u
xy07 STR pitch10u
xy10 STR pitch10u
xy11 STR pitch10u
xy12 STR pitch10u
xy13 STR pitch10u
xy14 STR pitch10u
xy15 STR pitch10u
xy16 STR pitch10u
xy17 STR pitch10u
xy20 STR pitch10u
xy21 STR pitch10u
xy22 STR pitch10u
xy23 STR pitch10u
xy24 STR pitch10u
xy25 STR pitch10u
xy26 STR pitch10u
xy27 STR pitch10u
xy30 STR pitch10u
xy31 STR pitch10u
xy32 STR pitch10u
xy33 STR pitch10u
xy34 STR pitch10u
xy35 STR pitch10u
xy36 STR pitch10u
xy37 STR pitch10u
xy40 STR pitch10u
xy41 STR pitch10u
xy42 STR pitch10u
xy43 STR pitch10u
xy44 STR pitch10u
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xy45 STR pitch10u
xy46 STR pitch10u
xy47 STR pitch10u
xy50 STR pitch10u
xy51 STR pitch10u
xy52 STR pitch10u
xy53 STR pitch10u
xy54 STR pitch10u
xy55 STR pitch10u
xy56 STR pitch10u
xy57 STR pitch10u
xy60 STR pitch10u
xy61 STR pitch10u
xy62 STR pitch10u
xy63 STR pitch10u
xy64 STR pitch10u
xy65 STR pitch10u
xy66 STR pitch10u
xy67 STR pitch10u
xy70 STR pitch10u
xy71 STR pitch10u
xy72 STR pitch10u
xy73 STR pitch10u
xy74 STR pitch10u
xy75 STR pitch10u
xy76 STR pitch10u
xy77 STR pitch10u

END

# Specify the cell data
CELLS METADATA

pitch10u METADATA
CELL.BIASSEC STR VALUE:[575:606,1:594]
CELL.TRIMSEC STR VALUE:[1:574,1:594]

# CELL.BIASSEC STR HEADER:BIASSEC
# CELL.TRIMSEC STR HEADER:DATASEC
END

# This is just in here for fun
pitch12u METADATA

CELL.BIASSEC STR VALUE:[1:10,1:512];[523:574,1:512]
CELL.TRIMSEC STR VALUE:[11:522,1:512]

# CELL.BIASSEC STR HEADER:BIASSEC
# CELL.TRIMSEC STR HEADER:TRIMSEC
END

END

# How to translate PS concepts into FITS headers
TRANSLATION METADATA

CELL.BIN STR CCDSUM
CELL.SATURATION STR SATURATE

END

# Default PS concepts that may be specified by value
DEFAULTS METADATA

FPA.AIRMASS F32 0.0
FPA.FILTER STR NONE
FPA.POSANGLE F32 0.0
FPA.RA STR 0:0:0
FPA.DEC STR 0:0:0
FPA.RADECSYS STR ICRS
FPA.NAME S32 0
FPA.MJD F32 12345.6789
CELL.EXPOSURE F32 0.0
CELL.DARKTIME F32 0.0
CELL.GAIN F32 1.0
CELL.READNOISE F32 0.0
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CELL.BAD S32 0
CELL.BIN S32 1
CELL.XPARITY S32 1
CELL.YPARITY S32 1

END

# How to translate PS concepts into database lookups
DATABASE METADATA

TYPE dbEntry TABLE COLUMN GIVENDBCOL GIVENPS
CELL.GAIN dbEntry Camera gain chipId,cellId CHIP,CELL
CELL.READNOISE dbEntry Camera readNoise chipId,cellId CHIP,CELL

# A database entry refers to a particular column (COLUMN) in a
# particular table (TABLE), given certain PS concepts (GIVENPS) that
# match certain database columns (GIVENDBCOL).

END

C Revision Change Log

C.1 Changes from version 00 (16 August 2004) to version 01 (12 October 2004)

• clarified the image offsets for pmFlatField ()

• changed return value to bool.

• added pmCameraFromHeader

• added pmCameraValidateHeaders

• added pmFPAfromHeader

• Added pmReadoutCombine

C.2 Changes from version 01 (12 October 2004) to version 02 (30 November 2004)

• nBin in pmSubtractBias is also interpreted as the number of spline pieces if spline fitting is specified.

• Refined pmReadoutCombine specification in response to bug 227.

• added details to the functions pmCameraFromHeader, pmCameraValidateHeaders, and
pmFPAfromHeader.

• reorganiztion: placed configuration section up front, camera layout next, etc

• added details about configuration system

• added utility modules pmConfigLoadSite,pmConfigLoadCamera,pmConfigLoadRecipe

• added utility modules pmConfigLookupSTR, pmConfigLookupS32, pmConfigLookupF64,
pmConfigLookupRegion,

• added discussion about Coordinate transforms

• added discussion about pmReadoutLoad

• added module pmSubtractSky
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C.3 Changes from version 02 (30 November 2004) to version 03 (21 January 2005)

• Fixed up specification of fitSpec for pmSubtractSky.

• Added a mask to pmSubtractSky, and specified that binned pixels which are clipped may be interpolated
over, or simply ignored.

• Added further explanation for pmReadoutCombine.

• Added Object Detection section

• Added PSPhot pseudo-C example

C.4 Changes from version 03 (21 January 2005) to version 04 (14 February 2005)

• changed entries of the form psXXX to pmXXX (object section)

• added enum psSourceType

• Specified appropriate image types for the phase 2 modules (bug 258).

• clarified pmSourceRoughClass

• clarified pmSourceAddModel, pmSourceSubModel

C.5 Changes from version 04 (14 February 2005) to version 05 (21 March 2005)

• Added section on image combination

• Added section on image subtraction

C.6 Changes from version 05 (21 March 2005) to version 06 (27 April 2005)

• changed pmFindImagePeaks to return an array, not a list

• replaced pmCullPeakswith pmPeaksSubsetwhich returns a new array

• changed pmModel to use vectors for params and dparms.

• added nDOF and nIter to pmModel

• changed models to return psF64, not psF32, to match psMinimizeLMChi2Func

C.7 Changes from version 06 (27 April 2005) to version 07 (15 July 2005)

• Changed psRegion *region to psRegion region in prototypes (passed by value instead of by refer-
ence).

• pmSourceMoments does not require image parameter.

• Added masks to pmRejectPixels.
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• Added size and spatialOrder to pmSubtractionKernels.

• added Image Hierarchy section from psLibSDRS

• added photometry section from psLibSDRS

• added object function abstractions to Objects

• modified pmSource to include modelPSF and modelFLT

• Major changes to configuration. Modifyied pmConfig functions, and pmCameraFromHeader, and added
various other functions.

• Modifying psReadout, psCell, psChip, psFPA structures.

• Removing psObservatory, psExposure, psGrommitwhich were centered on slalib.

• Added pmFPAConstruct, pmFPARead, pmFPAMorph, pmFPAWrite.

C.8 Changes from version 07 (15 July 2005) to version 08 (13 Sept 2005)

• Added bias sections to pmReadout.

• Added CELL.READDIR to specify read direction; pmCellGetReaddir.

• pmFPAMorph specified, ready for coding.

• pmConfigRead shall call psTimeInitialize, psLogSetLevel, psLogSetFormat,
psTraceSetLevel.

• Added pmConfigDB.

• Changed pmNonLinearityLookup to read a psLookupTable.

• Changed input types for pmMaskBadPixels.

• Added pmFPAWriteMask.

• pmMaskBadPixels shall grow the mask for saturated by 1, in addition to the explicit grow.

• Added section on “Paper Trail” to Phase 2 functions.

• Adding log destination to pmConfigRead.

• Changing details of focal plane hierarchy.

• Concepts are evaluated at ingest by pmFPARead.

• Modified pmSubtractBias.

• Remove mask from pmFlatField (mask is contained in the readout).

• cleaned up / extended discussion of FITS and the FPA hierarchy.

• added CONCEPT.DEFAULT to DEFAULTS table.

Modules SDRS 74 January 22, 2006



Pan-STARRS Image Processing Pipeline PSDC-430-012-11

• added psArgumentVerbosity requirement to pmConfigRead.

• substantial changes to the Objects section:

– added psphotMaskValues?

– added SN to pmMoments

– added pmPSFClump

– modified pmSourceType enum list

– added radius to pmModel

– added pmModelGroup

– added several Model Group functions

– added pmPSF and related functions

– added pmPSFtry and related functions

– added pmSourceDefinePixels

– modified pmSourceLocalSkyAPI

– modified pmSourceMomentsAPI

– added pmSourcePSFClump

– modified pmSourceRoughClassAPI

– dropped pmSourceSetPixelsCircle (replaced with pmSourceDefinePixels and the image
mask functions.

– added pmModelFitStatus

– added pmSourcePhotometry

– added pmSourceDophotType

– added pmSourceSextractType

– moved discussion of the object models to an appendix

C.9 Changes from version 08 (13 Sept 2005) to version 09 (18 Oct 2005)

• fix enum syntax

• added Astrometry Fitting Support (matching / fitting routines)

• added pmAstromRadiusMatch

• added pmAstromGridMatch

• added pmAstromApplyGridMatch

• added pmAstromMeasureGradients

• added pmAstromFitFPA

• added pmAstromFitChip

• added pmAstromFitDistortion
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• renamed section 7 to Detrend Creation, moved pmReadoutCombine to a subsection

• added pmFringeStats (Fringe Amplitude subsection)

• added pmFlatNormalization (Flat-field renorm section)

• added pmDetrendLookup

C.10 Changes from version 09 (18 Oct 2005) to version 10 (06 Dec 2005)

• pmSubtractBias: The overscans are to be derived by the function using CELL.BIASSEC (not from the
bias parameter passed to the function, which is supposed to hold the full-frame bias image).

• pmSubtractBias: The full-frame (bias and dark) subtractions should only be performed on the region of the
image specified by CELL.TRIMSEC.

• pmNonLinearityPolynomial, pmNonLinearityLookup, pmFlatField, pmMaskBadPixels,
pmSubtractSky are to act only on the region of the readout image specified by CELL.TRIMSEC

• Added p_pmHDU.

• Changed pmFPA,pmChip,pmCell->private to hdu.

• changed pmAstrometryReadWCS to pmAstromReadWCS

• changed pmAstrometryWriteWCS to pmAstromWriteWCS

• changed pmAstromGridMatch to output pmAstromStats

• moved various pmAstromGridMatch output values from metadata to the output pmAstromStats

• changed pmAstromGridMatchAngle to pmAsromGridAngle

• changed pmAstromGridAngle to output pmAstromStats

• changed pmAstromRotateObj to accept center as psPlane

C.11 Changes from version 10 (06 Dec 2005) to version 11 (22 Jan 2006)

• modification of bias subtraction API

• updates to object/psphot APIs
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